lxl2023 commited on
Commit
68a6d3e
1 Parent(s): b357c90

Add application file

Browse files
Files changed (1) hide show
  1. app.py +19 -15
app.py CHANGED
@@ -1,23 +1,26 @@
1
- import gradio as gr
2
- import os
3
- from PIL import Image
4
- from langchain.tools import BaseTool
5
- import torch
6
- from transformers import BlipProcessor, BlipForConditionalGeneration
7
  from langchain.agents import load_tools
8
  from langchain.agents import initialize_agent
9
- from langchain.chat_models import ChatOpenAI
 
 
10
  from langchain.chat_models import AzureChatOpenAI
11
- from langchain.prompts import PromptTemplate
12
- from langchain.chains import LLMChain
13
  from langchain.chains.conversation.memory import ConversationBufferWindowMemory
 
 
 
14
  from transformers import BlipProcessor, BlipForConditionalGeneration
 
 
 
 
 
 
15
 
16
-
17
- OPENAI_API_KEY=os.getenv("OPENAI_API_KEY")
18
- OPENAI_API_BASE=os.getenv("OPENAI_API_BASE")
19
- DEPL_NAME=os.getenv("deployment_name")
20
- llm=AzureChatOpenAI(deployment_name=DEPL_NAME,openai_api_base=OPENAI_API_BASE,openai_api_key=OPENAI_API_KEY,openai_api_version="2023-03-15-preview",model_name="gpt-3.5-turbo")
21
 
22
  image_to_text_model = "Salesforce/blip-image-captioning-large"
23
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
@@ -27,6 +30,7 @@ processor = BlipProcessor.from_pretrained(image_to_text_model)
27
 
28
 
29
  def describeImage(image_url):
 
30
  image_object = Image.open(image_url).convert('RGB')
31
  # image
32
  inputs = processor(image_object, return_tensors="pt").to(device)
@@ -97,4 +101,4 @@ with gr.Blocks() as demo:
97
  submit_btn = gr.Button('提交', variant="primary")
98
  submit_btn.click(image_to_txt, inputs=[image_url, user_input], outputs=output)
99
 
100
- demo.launch()
 
 
 
 
 
 
 
1
  from langchain.agents import load_tools
2
  from langchain.agents import initialize_agent
3
+ from langchain.agents import AgentType
4
+ from langchain.llms import OpenAI
5
+ # from langchain.chat_models import ChatOpenAI
6
  from langchain.chat_models import AzureChatOpenAI
 
 
7
  from langchain.chains.conversation.memory import ConversationBufferWindowMemory
8
+ import os
9
+ from langchain.tools import BaseTool
10
+ import torch
11
  from transformers import BlipProcessor, BlipForConditionalGeneration
12
+ from transformers.models.oneformer.modeling_oneformer import OneFormerModelOutput
13
+ import requests
14
+ from PIL import Image
15
+ import gradio as gr
16
+ from langchain.chains import LLMChain
17
+ from langchain.prompts import PromptTemplate
18
 
19
+ OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
20
+ OPENAI_API_BASE = os.getenv("OPENAI_API_BASE")
21
+ DEP_NAME = os.getenv("deployment_name")
22
+ llm = AzureChatOpenAI(deployment_name=DEP_NAME, openai_api_base=OPENAI_API_BASE, openai_api_key=OPENAI_API_KEY,
23
+ openai_api_version="2023-03-15-preview", model_name="gpt-3.5-turbo")
24
 
25
  image_to_text_model = "Salesforce/blip-image-captioning-large"
26
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
 
30
 
31
 
32
  def describeImage(image_url):
33
+ # image_object = Image.open(requests.get(image_url, stream=True).raw).convert('RGB')
34
  image_object = Image.open(image_url).convert('RGB')
35
  # image
36
  inputs = processor(image_object, return_tensors="pt").to(device)
 
101
  submit_btn = gr.Button('提交', variant="primary")
102
  submit_btn.click(image_to_txt, inputs=[image_url, user_input], outputs=output)
103
 
104
+ demo.launch()