lwdragon commited on
Commit
3a02bb3
·
1 Parent(s): 26fce41

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +112 -0
app.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import zipfile
3
+ import numpy as np
4
+
5
+ import gradio as gr
6
+ import mindspore
7
+ import mindspore.nn as nn
8
+ import mindspore.numpy as mnp
9
+ import mindspore.ops as ops
10
+ import mindspore.dataset as dataset
11
+ from mindspore import Tensor
12
+ from mindspore import load_checkpoint, load_param_into_net
13
+ from mindspore.common.initializer import Uniform, HeUniform
14
+
15
+
16
+ def load_glove():
17
+ embeddings = []
18
+ tokens = []
19
+ with open("./lstm/glove.6B.100d.txt", encoding='utf-8') as gf:
20
+ for glove in gf:
21
+ word, embedding = glove.split(maxsplit=1)
22
+ tokens.append(word)
23
+ embeddings.append(np.fromstring(embedding, dtype=np.float32, sep=' '))
24
+ # 添加 <unk>, <pad> 两个特殊占位符对应的embedding
25
+ embeddings.append(np.random.rand(100))
26
+ embeddings.append(np.zeros((100,), np.float32))
27
+
28
+ vocab = dataset.text.Vocab.from_list(tokens, special_tokens=["<unk>", "<pad>"], special_first=False)
29
+ embeddings = np.array(embeddings).astype(np.float32)
30
+ return vocab, embeddings
31
+
32
+ class RNN(nn.Cell):
33
+ def __init__(self, embeddings, hidden_dim, output_dim, n_layers,
34
+ bidirectional, dropout, pad_idx):
35
+ super().__init__()
36
+ vocab_size, embedding_dim = embeddings.shape
37
+ self.embedding = nn.Embedding(vocab_size, embedding_dim, embedding_table=Tensor(embeddings), padding_idx=pad_idx)
38
+ self.rnn = nn.LSTM(embedding_dim,
39
+ hidden_dim,
40
+ num_layers=n_layers,
41
+ bidirectional=bidirectional,
42
+ dropout=dropout,
43
+ batch_first=True)
44
+ weight_init = HeUniform(math.sqrt(5))
45
+ bias_init = Uniform(1 / math.sqrt(hidden_dim * 2))
46
+ self.fc = nn.Dense(hidden_dim * 2, output_dim, weight_init=weight_init, bias_init=bias_init)
47
+ self.dropout = nn.Dropout(1 - dropout)
48
+ self.sigmoid = ops.Sigmoid()
49
+
50
+ def construct(self, inputs):
51
+ embedded = self.dropout(self.embedding(inputs))
52
+ _, (hidden, _) = self.rnn(embedded)
53
+ hidden = self.dropout(mnp.concatenate((hidden[-2, :, :], hidden[-1, :, :]), axis=1))
54
+ output = self.fc(hidden)
55
+ return self.sigmoid(output)
56
+
57
+ score_map = {
58
+ 1: "Positive",
59
+ 0: "Negative"
60
+ }
61
+
62
+ def predict_sentiment(model, vocab, sentence):
63
+ model.set_train(False)
64
+ tokenized = sentence.lower().split()
65
+ indexed = vocab.tokens_to_ids(tokenized)
66
+ tensor = mindspore.Tensor(indexed, mindspore.int32)
67
+ tensor = tensor.expand_dims(0)
68
+ prediction = model(tensor)
69
+ return prediction.asnumpy()
70
+
71
+ def prefict_emotion(sentence):
72
+ # 加载网路
73
+ hidden_size = 256
74
+ output_size = 1
75
+ num_layers = 2
76
+ bidirectional = True
77
+ dropout = 0.5
78
+ lr = 0.00
79
+
80
+ vocab, embeddings = load_glove()
81
+ pad_idx = vocab.tokens_to_ids('<pad>')
82
+ net = RNN(embeddings, hidden_size, output_size, num_layers, bidirectional, dropout, pad_idx)
83
+
84
+ # 将模型参数存入parameter的字典中
85
+ param_dict = load_checkpoint("./lstm/sentiment-analysis.ckpt")
86
+
87
+ # 将参数加载到网络中
88
+ load_param_into_net(net, param_dict)
89
+ model = Model(net)
90
+
91
+ # 预测
92
+ pred = predict_sentiment(model, vocab, sentence)
93
+ result = {
94
+ "Positive 🙂": pred,
95
+ "Negative 🙃": 1-pred,
96
+ }
97
+ return result
98
+
99
+ gr.Interface(
100
+ fn=prefict_emotion,
101
+ inputs=gr.inputs.Textbox(
102
+ lines=3,
103
+ placeholder="Type a phrase that has some emotion",
104
+ label="Input Text",
105
+ ),
106
+ outputs="label",
107
+ title="Sentiment Analysis",
108
+ examples=[
109
+ "This film is terrible",
110
+ "This film is great",
111
+ ],
112
+ ).launch(share=True)