Haofei Yu
commited on
Commit
•
1510f49
1
Parent(s):
3a62692
support pre-commit (#10)
Browse files- .gitignore +1 -1
- .pre-commit-config.yaml +27 -0
- app.py +73 -45
.gitignore
CHANGED
@@ -157,4 +157,4 @@ cython_debug/
|
|
157 |
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
-
#.idea/
|
|
|
157 |
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
+
#.idea/
|
.pre-commit-config.yaml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
repos:
|
2 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
3 |
+
rev: v3.2.0
|
4 |
+
hooks:
|
5 |
+
- id: trailing-whitespace
|
6 |
+
- id: end-of-file-fixer
|
7 |
+
- id: check-yaml
|
8 |
+
- id: check-added-large-files
|
9 |
+
- repo: https://github.com/pre-commit/mirrors-prettier
|
10 |
+
rev: v3.0.1 # Use the sha / tag you want to point at
|
11 |
+
hooks:
|
12 |
+
- id: prettier
|
13 |
+
types_or: [html]
|
14 |
+
- repo: https://github.com/psf/black
|
15 |
+
rev: 22.12.0
|
16 |
+
hooks:
|
17 |
+
- id: black
|
18 |
+
args: [--line-length=79]
|
19 |
+
- repo: https://github.com/pycqa/isort
|
20 |
+
rev: 5.12.0
|
21 |
+
hooks:
|
22 |
+
- id: isort
|
23 |
+
args: ["--profile", "black", --line-length=72]
|
24 |
+
- repo: https://github.com/kynan/nbstripout
|
25 |
+
rev: 0.6.0
|
26 |
+
hooks:
|
27 |
+
- id: nbstripout
|
app.py
CHANGED
@@ -1,16 +1,17 @@
|
|
1 |
import os
|
2 |
-
import gradio as gr
|
3 |
import sys
|
4 |
-
|
|
|
|
|
|
|
5 |
from ctm.ctms.ctm_base import BaseConsciousnessTuringMachine
|
6 |
|
7 |
ctm = BaseConsciousnessTuringMachine()
|
8 |
-
ctm.add_processor("gpt4_text_emotion_processor", group_name="group_1")
|
9 |
-
ctm.add_processor("gpt4_text_summary_processor", group_name="group_1")
|
10 |
ctm.add_supervisor("gpt4_supervisor")
|
11 |
|
12 |
DEPLOYED = os.getenv("DEPLOYED", "true").lower() == "true"
|
13 |
|
|
|
14 |
def introduction():
|
15 |
with gr.Column(scale=2):
|
16 |
gr.Image(
|
@@ -22,11 +23,13 @@ def introduction():
|
|
22 |
"""
|
23 |
)
|
24 |
|
|
|
25 |
def add_processor(processor_name, display_name, state):
|
26 |
-
print(
|
27 |
ctm.add_processor(processor_name)
|
28 |
print(len(ctm.processor_list))
|
29 |
-
return display_name +
|
|
|
30 |
|
31 |
def processor_tab():
|
32 |
# Categorized model names
|
@@ -34,14 +37,14 @@ def processor_tab():
|
|
34 |
"gpt4_text_emotion_processor",
|
35 |
"gpt4_text_summary_processor",
|
36 |
"gpt4_speaker_intent_processor",
|
37 |
-
"roberta_text_sentiment_processor"
|
38 |
]
|
39 |
vision_processors = [
|
40 |
"gpt4v_cloth_fashion_processor",
|
41 |
"gpt4v_face_emotion_processor",
|
42 |
"gpt4v_ocr_processor",
|
43 |
"gpt4v_posture",
|
44 |
-
"gpt4v_scene_location_processor"
|
45 |
]
|
46 |
|
47 |
with gr.Blocks():
|
@@ -49,77 +52,100 @@ def processor_tab():
|
|
49 |
with gr.Column(scale=1):
|
50 |
gr.Markdown("### Text Processors")
|
51 |
for model_name in text_processors:
|
52 |
-
display_name =
|
|
|
|
|
|
|
|
|
53 |
|
54 |
button = gr.Button(display_name)
|
55 |
-
processor_name = gr.Textbox(
|
56 |
-
|
|
|
|
|
|
|
|
|
57 |
button.click(
|
58 |
fn=add_processor,
|
59 |
inputs=[processor_name, display_name, gr.State()],
|
60 |
-
outputs=[button]
|
61 |
)
|
62 |
|
63 |
with gr.Column(scale=1):
|
64 |
gr.Markdown("### Vision Processors")
|
65 |
for model_name in vision_processors:
|
66 |
-
display_name =
|
|
|
|
|
|
|
|
|
67 |
|
68 |
button = gr.Button(display_name)
|
69 |
-
processor_name = gr.Textbox(
|
70 |
-
|
|
|
|
|
|
|
|
|
71 |
button.click(
|
72 |
fn=add_processor,
|
73 |
inputs=[processor_name, display_name, gr.State()],
|
74 |
-
outputs=[button]
|
75 |
)
|
76 |
|
77 |
|
78 |
-
|
79 |
-
|
80 |
def forward(query, content, image, state):
|
81 |
-
state[
|
82 |
-
ask_processors_output_info, state = ask_processors(
|
|
|
|
|
83 |
uptree_competition_output_info, state = uptree_competition(state)
|
84 |
ask_supervisor_output_info, state = ask_supervisor(state)
|
85 |
|
86 |
-
ctm.downtree_broadcast(state[
|
87 |
-
ctm.link_form(state[
|
88 |
-
return
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
|
91 |
def ask_processors(query, content, image, state):
|
92 |
# Simulate processing here
|
93 |
processor_output = ctm.ask_processors(
|
94 |
-
question=query,
|
95 |
-
context=content,
|
96 |
image_path=None,
|
97 |
audio_path=None,
|
98 |
-
video_path=None
|
99 |
)
|
100 |
-
output_info =
|
101 |
for name, info in processor_output.items():
|
102 |
output_info += f"{name}: {info['gist']}\n"
|
103 |
-
state[
|
104 |
return output_info, state
|
105 |
|
106 |
|
107 |
def uptree_competition(state):
|
108 |
-
winning_output = ctm.uptree_competition(
|
109 |
-
|
|
|
|
|
|
|
|
|
110 |
)
|
111 |
-
state['winning_output'] = winning_output
|
112 |
-
output_info = 'The winning processor is: {}\nThe winning gist is: {}\n'.format(winning_output['name'], winning_output['gist'])
|
113 |
return output_info, state
|
114 |
|
115 |
|
116 |
def ask_supervisor(state):
|
117 |
-
question = state[
|
118 |
-
winning_output = state[
|
119 |
answer, score = ctm.ask_supervisor(question, winning_output)
|
120 |
-
output_info = f
|
121 |
-
state[
|
122 |
-
state[
|
123 |
return output_info, state
|
124 |
|
125 |
|
@@ -140,23 +166,25 @@ def interface_tab():
|
|
140 |
|
141 |
# Outputs
|
142 |
processors_output = gr.Textbox(
|
143 |
-
label="Processors Output",
|
144 |
-
visible=True
|
145 |
)
|
146 |
competition_output = gr.Textbox(
|
147 |
-
label="Up-tree Competition Output",
|
148 |
-
visible=True
|
149 |
)
|
150 |
supervisor_output = gr.Textbox(
|
151 |
-
label="Supervisor Output",
|
152 |
-
visible=True
|
153 |
)
|
154 |
|
155 |
# Set up button to start or continue processing
|
156 |
forward_button.click(
|
157 |
fn=forward,
|
158 |
inputs=[query, content, image, state],
|
159 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
160 |
)
|
161 |
|
162 |
return interface_tab
|
@@ -190,4 +218,4 @@ def start_demo():
|
|
190 |
|
191 |
|
192 |
if __name__ == "__main__":
|
193 |
-
start_demo()
|
|
|
1 |
import os
|
|
|
2 |
import sys
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
sys.path.append("../CTM/")
|
7 |
from ctm.ctms.ctm_base import BaseConsciousnessTuringMachine
|
8 |
|
9 |
ctm = BaseConsciousnessTuringMachine()
|
|
|
|
|
10 |
ctm.add_supervisor("gpt4_supervisor")
|
11 |
|
12 |
DEPLOYED = os.getenv("DEPLOYED", "true").lower() == "true"
|
13 |
|
14 |
+
|
15 |
def introduction():
|
16 |
with gr.Column(scale=2):
|
17 |
gr.Image(
|
|
|
23 |
"""
|
24 |
)
|
25 |
|
26 |
+
|
27 |
def add_processor(processor_name, display_name, state):
|
28 |
+
print("add processor ", processor_name)
|
29 |
ctm.add_processor(processor_name)
|
30 |
print(len(ctm.processor_list))
|
31 |
+
return display_name + " (added)"
|
32 |
+
|
33 |
|
34 |
def processor_tab():
|
35 |
# Categorized model names
|
|
|
37 |
"gpt4_text_emotion_processor",
|
38 |
"gpt4_text_summary_processor",
|
39 |
"gpt4_speaker_intent_processor",
|
40 |
+
"roberta_text_sentiment_processor",
|
41 |
]
|
42 |
vision_processors = [
|
43 |
"gpt4v_cloth_fashion_processor",
|
44 |
"gpt4v_face_emotion_processor",
|
45 |
"gpt4v_ocr_processor",
|
46 |
"gpt4v_posture",
|
47 |
+
"gpt4v_scene_location_processor",
|
48 |
]
|
49 |
|
50 |
with gr.Blocks():
|
|
|
52 |
with gr.Column(scale=1):
|
53 |
gr.Markdown("### Text Processors")
|
54 |
for model_name in text_processors:
|
55 |
+
display_name = (
|
56 |
+
model_name.replace("processor", "")
|
57 |
+
.replace("_", " ")
|
58 |
+
.title()
|
59 |
+
)
|
60 |
|
61 |
button = gr.Button(display_name)
|
62 |
+
processor_name = gr.Textbox(
|
63 |
+
value=model_name, visible=False
|
64 |
+
)
|
65 |
+
display_name = gr.Textbox(
|
66 |
+
value=display_name, visible=False
|
67 |
+
)
|
68 |
button.click(
|
69 |
fn=add_processor,
|
70 |
inputs=[processor_name, display_name, gr.State()],
|
71 |
+
outputs=[button],
|
72 |
)
|
73 |
|
74 |
with gr.Column(scale=1):
|
75 |
gr.Markdown("### Vision Processors")
|
76 |
for model_name in vision_processors:
|
77 |
+
display_name = (
|
78 |
+
model_name.replace("processor", "")
|
79 |
+
.replace("_", " ")
|
80 |
+
.title()
|
81 |
+
)
|
82 |
|
83 |
button = gr.Button(display_name)
|
84 |
+
processor_name = gr.Textbox(
|
85 |
+
value=model_name, visible=False
|
86 |
+
)
|
87 |
+
display_name = gr.Textbox(
|
88 |
+
value=display_name, visible=False
|
89 |
+
)
|
90 |
button.click(
|
91 |
fn=add_processor,
|
92 |
inputs=[processor_name, display_name, gr.State()],
|
93 |
+
outputs=[button],
|
94 |
)
|
95 |
|
96 |
|
|
|
|
|
97 |
def forward(query, content, image, state):
|
98 |
+
state["question"] = query
|
99 |
+
ask_processors_output_info, state = ask_processors(
|
100 |
+
query, content, image, state
|
101 |
+
)
|
102 |
uptree_competition_output_info, state = uptree_competition(state)
|
103 |
ask_supervisor_output_info, state = ask_supervisor(state)
|
104 |
|
105 |
+
ctm.downtree_broadcast(state["winning_output"])
|
106 |
+
ctm.link_form(state["processor_output"])
|
107 |
+
return (
|
108 |
+
ask_processors_output_info,
|
109 |
+
uptree_competition_output_info,
|
110 |
+
ask_supervisor_output_info,
|
111 |
+
state,
|
112 |
+
)
|
113 |
|
114 |
|
115 |
def ask_processors(query, content, image, state):
|
116 |
# Simulate processing here
|
117 |
processor_output = ctm.ask_processors(
|
118 |
+
question=query,
|
119 |
+
context=content,
|
120 |
image_path=None,
|
121 |
audio_path=None,
|
122 |
+
video_path=None,
|
123 |
)
|
124 |
+
output_info = ""
|
125 |
for name, info in processor_output.items():
|
126 |
output_info += f"{name}: {info['gist']}\n"
|
127 |
+
state["processor_output"] = processor_output
|
128 |
return output_info, state
|
129 |
|
130 |
|
131 |
def uptree_competition(state):
|
132 |
+
winning_output = ctm.uptree_competition(state["processor_output"])
|
133 |
+
state["winning_output"] = winning_output
|
134 |
+
output_info = (
|
135 |
+
"The winning processor is: {}\nThe winning gist is: {}\n".format(
|
136 |
+
winning_output["name"], winning_output["gist"]
|
137 |
+
)
|
138 |
)
|
|
|
|
|
139 |
return output_info, state
|
140 |
|
141 |
|
142 |
def ask_supervisor(state):
|
143 |
+
question = state["question"]
|
144 |
+
winning_output = state["winning_output"]
|
145 |
answer, score = ctm.ask_supervisor(question, winning_output)
|
146 |
+
output_info = f'The answer to the query "{question}" is: {answer}\nThe confidence for answering is: {score}\n'
|
147 |
+
state["answer"] = answer
|
148 |
+
state["score"] = score
|
149 |
return output_info, state
|
150 |
|
151 |
|
|
|
166 |
|
167 |
# Outputs
|
168 |
processors_output = gr.Textbox(
|
169 |
+
label="Processors Output", visible=True
|
|
|
170 |
)
|
171 |
competition_output = gr.Textbox(
|
172 |
+
label="Up-tree Competition Output", visible=True
|
|
|
173 |
)
|
174 |
supervisor_output = gr.Textbox(
|
175 |
+
label="Supervisor Output", visible=True
|
|
|
176 |
)
|
177 |
|
178 |
# Set up button to start or continue processing
|
179 |
forward_button.click(
|
180 |
fn=forward,
|
181 |
inputs=[query, content, image, state],
|
182 |
+
outputs=[
|
183 |
+
processors_output,
|
184 |
+
competition_output,
|
185 |
+
supervisor_output,
|
186 |
+
state,
|
187 |
+
],
|
188 |
)
|
189 |
|
190 |
return interface_tab
|
|
|
218 |
|
219 |
|
220 |
if __name__ == "__main__":
|
221 |
+
start_demo()
|