Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
from transformers import pipeline | |
# from diffusers import StableDiffusionPipeline | |
# import torch | |
sd_description = "ζεηζεΎη" | |
sd_examples = [["ε°η«"], ["cat"], ["dog"]] | |
sd_demo = gr.Interface.load("models/runwayml/stable-diffusion-v1-5", title='ζεηζεΎη', examples=sd_examples) | |
pipe = pipeline("image-classification") | |
examples = [[os.path.join(os.path.dirname(__file__), "lion.jpg")], [os.path.join(os.path.dirname(__file__), "cat.jpeg")]] | |
app = gr.Interface.from_pipeline(pipe, examples=examples, title='εΎηθ―ε«') | |
# model_id = "dreamlike-art/dreamlike-photoreal-2.0" | |
# pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32) | |
# pipe_v1 = pipe.to("cpu") | |
# def generate_image_v1(prompt): | |
# return pipe_v1(prompt).images[0] | |
# examples = [["θ½ζ₯"], ["ζ²ζ»©"]] | |
# app_v1 = gr.Interface(fn=generate_image_v1, inputs="text", outputs="image", examples=examples) | |
demo = gr.TabbedInterface([sd_demo, app], ["ζεηζεΎη", "εΎηθ―ε«"]) | |
demo.queue(concurrency_count=2) | |
demo.launch() | |