lvwerra HF staff commited on
Commit
1edea07
1 Parent(s): ed4871a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -4
app.py CHANGED
@@ -2,6 +2,12 @@ import gradio as gr
2
  import matplotlib.pyplot as plt
3
  import numpy as np
4
 
 
 
 
 
 
 
5
  ### CHINCHILLA PARAMS:
6
  E = 1.62
7
  A = 406.4
@@ -80,10 +86,7 @@ Inference cost fraction:\t {kn*100:.2f}%"""
80
  return text, fig
81
 
82
  with gr.Blocks() as demo:
83
- gr.Markdown("# Harm's law\
84
- The Chinchilla scaling laws focus on optimally scaling training compute but often we also care about inference cost.
85
- This tool follows [Harm de Vries' blog post](https://www.harmdevries.com/post/model-size-vs-compute-overhead/) and visualizes the tradeoff between training comput and inference cost (i.e. model size).
86
- ")
87
  N = gr.Number(value=1, label="Model size (in B parameters):")
88
  D = gr.Number(value=100, label="Dataset size (in B tokens):")
89
  button = gr.Button("Compute!")
 
2
  import matplotlib.pyplot as plt
3
  import numpy as np
4
 
5
+ INTRO = """# Harm's law
6
+
7
+ The Chinchilla scaling laws focus on optimally scaling training compute but often we also care about inference cost.
8
+ This tool follows [Harm de Vries' blog post](https://www.harmdevries.com/post/model-size-vs-compute-overhead/) and visualizes the tradeoff between training comput and inference cost (i.e. model size).
9
+ """
10
+
11
  ### CHINCHILLA PARAMS:
12
  E = 1.62
13
  A = 406.4
 
86
  return text, fig
87
 
88
  with gr.Blocks() as demo:
89
+ gr.Markdown(INTRO)
 
 
 
90
  N = gr.Number(value=1, label="Model size (in B parameters):")
91
  D = gr.Number(value=100, label="Dataset size (in B tokens):")
92
  button = gr.Button("Compute!")