Spaces:
Runtime error
Runtime error
Upload 4 files
Browse files- README.md +128 -0
- accuracy_score.py +154 -0
- app.py +6 -0
- requirements.txt +2 -0
README.md
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: accuracy_score
|
| 3 |
+
emoji: 🤗
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: orange
|
| 6 |
+
tags:
|
| 7 |
+
- evaluate
|
| 8 |
+
- metric
|
| 9 |
+
- sklearn
|
| 10 |
+
description: >-
|
| 11 |
+
"Accuracy classification score."
|
| 12 |
+
sdk: gradio
|
| 13 |
+
sdk_version: 3.12.0
|
| 14 |
+
app_file: app.py
|
| 15 |
+
pinned: false
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
This metric is part of the Scikit-learn integration into 🤗 Evaluate. You can find all available metrics in the [Scikit-learn organization](https://huggingface.co/scikit-learn) on the Hugging Face Hub.
|
| 19 |
+
|
| 20 |
+
<p align="center">
|
| 21 |
+
<img src="https://raw.githubusercontent.com/scikit-learn/scikit-learn/main/doc/logos/1280px-scikit-learn-logo.png" width="400"/>
|
| 22 |
+
</p>
|
| 23 |
+
|
| 24 |
+
# Metric Card for `sklearn.metrics.accuracy_score`
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
## Input Convention
|
| 30 |
+
|
| 31 |
+
To be consistent with the `evaluate` input conventions the scikit-learn inputs are renamed:
|
| 32 |
+
|
| 33 |
+
- `y_true`: `references`
|
| 34 |
+
- `y_pred`: `predictions`
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
## Usage
|
| 38 |
+
|
| 39 |
+
```python
|
| 40 |
+
import evaluate
|
| 41 |
+
|
| 42 |
+
metric = evaluate.load("sklearn/accuracy_score")
|
| 43 |
+
results = metric.compute(references=references, predictions=predictions)
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
## Description
|
| 47 |
+
|
| 48 |
+
Accuracy classification score.
|
| 49 |
+
|
| 50 |
+
In multilabel classification, this function computes subset accuracy:
|
| 51 |
+
the set of labels predicted for a sample must *exactly* match the
|
| 52 |
+
corresponding set of labels in y_true.
|
| 53 |
+
|
| 54 |
+
Read more in the :ref:`User Guide <accuracy_score>`.
|
| 55 |
+
|
| 56 |
+
Parameters
|
| 57 |
+
----------
|
| 58 |
+
y_true : 1d array-like, or label indicator array / sparse matrix
|
| 59 |
+
Ground truth (correct) labels.
|
| 60 |
+
|
| 61 |
+
y_pred : 1d array-like, or label indicator array / sparse matrix
|
| 62 |
+
Predicted labels, as returned by a classifier.
|
| 63 |
+
|
| 64 |
+
normalize : bool, default=True
|
| 65 |
+
If ``False``, return the number of correctly classified samples.
|
| 66 |
+
Otherwise, return the fraction of correctly classified samples.
|
| 67 |
+
|
| 68 |
+
sample_weight : array-like of shape (n_samples,), default=None
|
| 69 |
+
Sample weights.
|
| 70 |
+
|
| 71 |
+
Returns
|
| 72 |
+
-------
|
| 73 |
+
score : float
|
| 74 |
+
If ``normalize == True``, return the fraction of correctly
|
| 75 |
+
classified samples (float), else returns the number of correctly
|
| 76 |
+
classified samples (int).
|
| 77 |
+
|
| 78 |
+
The best performance is 1 with ``normalize == True`` and the number
|
| 79 |
+
of samples with ``normalize == False``.
|
| 80 |
+
|
| 81 |
+
See Also
|
| 82 |
+
--------
|
| 83 |
+
balanced_accuracy_score : Compute the balanced accuracy to deal with
|
| 84 |
+
imbalanced datasets.
|
| 85 |
+
jaccard_score : Compute the Jaccard similarity coefficient score.
|
| 86 |
+
hamming_loss : Compute the average Hamming loss or Hamming distance between
|
| 87 |
+
two sets of samples.
|
| 88 |
+
zero_one_loss : Compute the Zero-one classification loss. By default, the
|
| 89 |
+
function will return the percentage of imperfectly predicted subsets.
|
| 90 |
+
|
| 91 |
+
Notes
|
| 92 |
+
-----
|
| 93 |
+
In binary classification, this function is equal to the `jaccard_score`
|
| 94 |
+
function.
|
| 95 |
+
|
| 96 |
+
Examples
|
| 97 |
+
--------
|
| 98 |
+
>>> from sklearn.metrics import accuracy_score
|
| 99 |
+
>>> y_pred = [0, 2, 1, 3]
|
| 100 |
+
>>> y_true = [0, 1, 2, 3]
|
| 101 |
+
>>> accuracy_score(y_true, y_pred)
|
| 102 |
+
0.5
|
| 103 |
+
>>> accuracy_score(y_true, y_pred, normalize=False)
|
| 104 |
+
2
|
| 105 |
+
|
| 106 |
+
In the multilabel case with binary label indicators:
|
| 107 |
+
|
| 108 |
+
>>> import numpy as np
|
| 109 |
+
>>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
|
| 110 |
+
0.5
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
## Citation
|
| 114 |
+
```bibtex
|
| 115 |
+
@article{scikit-learn,
|
| 116 |
+
title={Scikit-learn: Machine Learning in {P}ython},
|
| 117 |
+
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
|
| 118 |
+
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
|
| 119 |
+
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
|
| 120 |
+
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
|
| 121 |
+
journal={Journal of Machine Learning Research},
|
| 122 |
+
volume={12},
|
| 123 |
+
pages={2825--2830},
|
| 124 |
+
year={2011}
|
| 125 |
+
}
|
| 126 |
+
```
|
| 127 |
+
## Further References
|
| 128 |
+
- Docs: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
|
accuracy_score.py
ADDED
|
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
"""TODO: Add a description here."""
|
| 15 |
+
|
| 16 |
+
import datasets
|
| 17 |
+
from sklearn.metrics import accuracy_score
|
| 18 |
+
|
| 19 |
+
import evaluate
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
_CITATION = """\
|
| 23 |
+
@article{scikit-learn,
|
| 24 |
+
title={Scikit-learn: Machine Learning in {P}ython},
|
| 25 |
+
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
|
| 26 |
+
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
|
| 27 |
+
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
|
| 28 |
+
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
|
| 29 |
+
journal={Journal of Machine Learning Research},
|
| 30 |
+
volume={12},
|
| 31 |
+
pages={2825--2830},
|
| 32 |
+
year={2011}
|
| 33 |
+
}
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
_DESCRIPTION = """\
|
| 37 |
+
Accuracy classification score.
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
_KWARGS_DESCRIPTION = """
|
| 42 |
+
Note: To be consistent with the `evaluate` input conventions the scikit-learn inputs are renamed:
|
| 43 |
+
- `y_true`: `references`
|
| 44 |
+
- `y_pred`: `predictions`
|
| 45 |
+
|
| 46 |
+
Scikit-learn docstring:
|
| 47 |
+
Accuracy classification score.
|
| 48 |
+
|
| 49 |
+
In multilabel classification, this function computes subset accuracy:
|
| 50 |
+
the set of labels predicted for a sample must *exactly* match the
|
| 51 |
+
corresponding set of labels in y_true.
|
| 52 |
+
|
| 53 |
+
Read more in the :ref:`User Guide <accuracy_score>`.
|
| 54 |
+
|
| 55 |
+
Parameters
|
| 56 |
+
----------
|
| 57 |
+
y_true : 1d array-like, or label indicator array / sparse matrix
|
| 58 |
+
Ground truth (correct) labels.
|
| 59 |
+
|
| 60 |
+
y_pred : 1d array-like, or label indicator array / sparse matrix
|
| 61 |
+
Predicted labels, as returned by a classifier.
|
| 62 |
+
|
| 63 |
+
normalize : bool, default=True
|
| 64 |
+
If ``False``, return the number of correctly classified samples.
|
| 65 |
+
Otherwise, return the fraction of correctly classified samples.
|
| 66 |
+
|
| 67 |
+
sample_weight : array-like of shape (n_samples,), default=None
|
| 68 |
+
Sample weights.
|
| 69 |
+
|
| 70 |
+
Returns
|
| 71 |
+
-------
|
| 72 |
+
score : float
|
| 73 |
+
If ``normalize == True``, return the fraction of correctly
|
| 74 |
+
classified samples (float), else returns the number of correctly
|
| 75 |
+
classified samples (int).
|
| 76 |
+
|
| 77 |
+
The best performance is 1 with ``normalize == True`` and the number
|
| 78 |
+
of samples with ``normalize == False``.
|
| 79 |
+
|
| 80 |
+
See Also
|
| 81 |
+
--------
|
| 82 |
+
balanced_accuracy_score : Compute the balanced accuracy to deal with
|
| 83 |
+
imbalanced datasets.
|
| 84 |
+
jaccard_score : Compute the Jaccard similarity coefficient score.
|
| 85 |
+
hamming_loss : Compute the average Hamming loss or Hamming distance between
|
| 86 |
+
two sets of samples.
|
| 87 |
+
zero_one_loss : Compute the Zero-one classification loss. By default, the
|
| 88 |
+
function will return the percentage of imperfectly predicted subsets.
|
| 89 |
+
|
| 90 |
+
Notes
|
| 91 |
+
-----
|
| 92 |
+
In binary classification, this function is equal to the `jaccard_score`
|
| 93 |
+
function.
|
| 94 |
+
|
| 95 |
+
Examples
|
| 96 |
+
--------
|
| 97 |
+
>>> from sklearn.metrics import accuracy_score
|
| 98 |
+
>>> y_pred = [0, 2, 1, 3]
|
| 99 |
+
>>> y_true = [0, 1, 2, 3]
|
| 100 |
+
>>> accuracy_score(y_true, y_pred)
|
| 101 |
+
0.5
|
| 102 |
+
>>> accuracy_score(y_true, y_pred, normalize=False)
|
| 103 |
+
2
|
| 104 |
+
|
| 105 |
+
In the multilabel case with binary label indicators:
|
| 106 |
+
|
| 107 |
+
>>> import numpy as np
|
| 108 |
+
>>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
|
| 109 |
+
0.5
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
"""
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 116 |
+
class AccuracyScore(evaluate.Metric):
|
| 117 |
+
"""Accuracy classification score."""
|
| 118 |
+
|
| 119 |
+
def _info(self):
|
| 120 |
+
return evaluate.MetricInfo(
|
| 121 |
+
# This is the description that will appear on the modules page.
|
| 122 |
+
module_type="metric",
|
| 123 |
+
description=_DESCRIPTION,
|
| 124 |
+
citation=_CITATION,
|
| 125 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
| 126 |
+
# This defines the format of each prediction and reference
|
| 127 |
+
features=[
|
| 128 |
+
datasets.Features(
|
| 129 |
+
{
|
| 130 |
+
"predictions": datasets.Sequence(datasets.Value("int32")),
|
| 131 |
+
"references": datasets.Sequence(datasets.Value("int32")),
|
| 132 |
+
}
|
| 133 |
+
),
|
| 134 |
+
datasets.Features(
|
| 135 |
+
{"predictions": datasets.Sequence(datasets.Value("int32")), "references": datasets.Value("int32")}
|
| 136 |
+
),
|
| 137 |
+
datasets.Features(
|
| 138 |
+
{"predictions": datasets.Value("int32"), "references": datasets.Sequence(datasets.Value("int32"))}
|
| 139 |
+
),
|
| 140 |
+
datasets.Features({"predictions": datasets.Value("int32"), "references": datasets.Value("int32")}),
|
| 141 |
+
],
|
| 142 |
+
# Homepage of the module for documentation
|
| 143 |
+
homepage="https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html",
|
| 144 |
+
# Additional links to the codebase or references
|
| 145 |
+
codebase_urls=["https://github.com/scikit-learn/scikit-learn"],
|
| 146 |
+
reference_urls=["https://scikit-learn.org/stable/index.html"],
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
def _compute(self, predictions, references, normalize=True, sample_weight=None):
|
| 150 |
+
"""Returns the scores"""
|
| 151 |
+
|
| 152 |
+
score = accuracy_score(y_true=references, y_pred=predictions, normalize=normalize, sample_weight=sample_weight)
|
| 153 |
+
|
| 154 |
+
return {"accuracy_score": score}
|
app.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import evaluate
|
| 2 |
+
from evaluate.utils import launch_gradio_widget
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
module = evaluate.load("sklearn/accuracy_score")
|
| 6 |
+
launch_gradio_widget(module)
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
evaluate
|
| 2 |
+
sklearn
|