alyse-ai / app.py
luxmorocco's picture
Create app.py
57fe26d verified
raw
history blame
10.1 kB
import streamlit as st
from streamlit_drawable_canvas import st_canvas
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import json
import io
from datetime import datetime
import os
def initialize_session_state():
"""Initialize session state variables"""
if "annotations" not in st.session_state:
st.session_state["annotations"] = []
if "current_tool" not in st.session_state:
st.session_state["current_tool"] = "rect"
if "annotation_history" not in st.session_state:
st.session_state["annotation_history"] = []
if "is_authenticated" not in st.session_state:
st.session_state["is_authenticated"] = False
def authenticate_user():
"""Handle user authentication"""
st.title("πŸ₯ Alyse AI Prescription Annotation Tool")
if not st.session_state["is_authenticated"]:
with st.form("login_form"):
st.write("Please enter your credentials to access the tool.")
username = st.text_input("Username:")
password = st.text_input("Password:", type="password")
submit = st.form_submit_button("Login")
if submit:
if username == "alyse" and password == "pharmacie":
st.session_state["is_authenticated"] = True
st.success("βœ… Access granted! You can now use the application.")
st.rerun()
else:
st.error("❌ Invalid credentials. Please try again.")
return False
return True
def create_sidebar_controls():
"""Create sidebar controls for annotation settings"""
st.sidebar.header("πŸ“‹ Annotation Controls")
# Tool selection
tool_options = {
"rect": "Rectangle Box",
"line": "Line",
"circle": "Circle",
"freedraw": "Free Draw"
}
st.session_state["current_tool"] = st.sidebar.radio(
"Select Drawing Tool:",
options=list(tool_options.keys()),
format_func=lambda x: tool_options[x]
)
# Color selection
stroke_color = st.sidebar.color_picker("Stroke Color:", "#0000FF")
stroke_width = st.sidebar.slider("Stroke Width:", 1, 10, 2)
# Annotation categories
annotation_category = st.sidebar.selectbox(
"Annotation Category:",
["Medication Name", "Dosage", "Frequency", "Duration", "Patient Info", "Doctor Info", "Other"]
)
return stroke_color, stroke_width, annotation_category
def preprocess_image(image):
"""Resize image if too large for Streamlit Cloud"""
max_size = (800, 800) # Maximum dimensions
# Calculate aspect ratio
width_ratio = max_size[0] / image.size[0]
height_ratio = max_size[1] / image.size[1]
resize_ratio = min(width_ratio, height_ratio)
# Only resize if image is too large
if resize_ratio < 1:
new_size = (
int(image.size[0] * resize_ratio),
int(image.size[1] * resize_ratio)
)
return image.resize(new_size, Image.Resampling.LANCZOS)
return image
def handle_canvas_drawing(image, stroke_color, stroke_width, category):
"""Handle canvas drawing with preprocessed image"""
processed_image = preprocess_image(image)
canvas_result = st_canvas(
fill_color="rgba(0, 0, 0, 0)",
stroke_width=stroke_width,
stroke_color=stroke_color,
background_image=processed_image,
update_streamlit=True,
width=processed_image.size[0],
height=processed_image.size[1],
drawing_mode=st.session_state["current_tool"],
display_toolbar=True,
key="canvas",
)
if canvas_result.json_data:
objects = canvas_result.json_data.get("objects", [])
for obj in objects:
if obj not in [ann.get("object_data") for ann in st.session_state["annotations"]]:
new_annotation = {
"object_data": obj,
"category": category,
"text": "",
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
st.session_state["annotations"].append(new_annotation)
st.session_state["annotation_history"].append(new_annotation)
def display_annotation_list():
"""Display and manage list of annotations"""
st.sidebar.subheader("πŸ“ Current Annotations")
for i, annotation in enumerate(st.session_state["annotations"]):
with st.sidebar.expander(f"Annotation {i+1} - {annotation['category']}"):
# Update annotation text
new_text = st.text_area(
"Description:",
annotation["text"],
key=f"text_input_{i}"
)
st.session_state["annotations"][i]["text"] = new_text
# Display annotation details
st.write(f"Created: {annotation['timestamp']}")
# Delete individual annotation
if st.button("Delete", key=f"delete_{i}"):
st.session_state["annotations"].pop(i)
st.rerun()
def save_annotations(image, uploaded_file):
"""Handle saving and downloading annotations"""
st.sidebar.subheader("πŸ’Ύ Save & Export")
if st.sidebar.button("Save and Download"):
# Create annotated image
annotated_image = image.copy()
draw = ImageDraw.Draw(annotated_image)
# Draw annotations
for annotation in st.session_state["annotations"]:
obj = annotation["object_data"]
if obj["type"] == "rect":
draw.rectangle(
[obj["left"], obj["top"],
obj["left"] + obj["width"],
obj["top"] + obj["height"]],
outline=obj["stroke"],
width=int(obj["strokeWidth"])
)
# Add text label
draw.text(
(obj["left"], obj["top"] - 15),
f"{annotation['category']}: {annotation['text']}",
fill=obj["stroke"]
)
# Save files
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
# Save annotated image
img_buffer = io.BytesIO()
annotated_image.save(img_buffer, format="JPEG", quality=95)
img_buffer.seek(0)
# Save annotations JSON
annotations_data = {
"image_id": uploaded_file.name,
"timestamp": timestamp,
"annotations": [
{
"category": ann["category"],
"text": ann["text"],
"timestamp": ann["timestamp"],
"object_data": ann["object_data"]
}
for ann in st.session_state["annotations"]
]
}
# Convert JSON to string first, then to bytes
json_str = json.dumps(annotations_data, indent=2)
json_bytes = json_str.encode('utf-8')
json_buffer = io.BytesIO(json_bytes)
# Download buttons
col1, col2 = st.sidebar.columns(2)
with col1:
st.download_button(
"πŸ“· Download Image",
data=img_buffer,
file_name=f"annotated_{timestamp}.jpg",
mime="image/jpeg"
)
with col2:
st.download_button(
"πŸ“„ Download JSON",
data=json_buffer,
file_name=f"annotations_{timestamp}.json",
mime="application/json"
)
st.sidebar.success("βœ… Files saved successfully!")
def main():
"""Main application logic"""
initialize_session_state()
if not authenticate_user():
return
# File upload
uploaded_file = st.file_uploader(
"πŸ“€ Upload Prescription Image",
type=["jpg", "jpeg", "png"],
help="Upload a clear image of the prescription to annotate"
)
if uploaded_file:
# Load and display image
image = Image.open(uploaded_file).convert("RGB")
# Create two columns for layout
col1, col2 = st.columns([2, 1])
with col1:
# Get annotation settings
stroke_color, stroke_width, category = create_sidebar_controls()
# Handle canvas drawing
handle_canvas_drawing(image, stroke_color, stroke_width, category)
with col2:
# Undo/Redo buttons
col_undo, col_redo, col_clear = st.columns(3)
with col_undo:
if st.button("↩️ Undo") and st.session_state["annotations"]:
last_annotation = st.session_state["annotations"].pop()
st.session_state["annotation_history"].append(last_annotation)
with col_redo:
if st.button("β†ͺ️ Redo") and st.session_state["annotation_history"]:
st.session_state["annotations"].append(
st.session_state["annotation_history"].pop()
)
with col_clear:
if st.button("πŸ—‘οΈ Clear All"):
st.session_state["annotations"] = []
st.session_state["annotation_history"] = []
# Display annotation list
display_annotation_list()
# Save and download options
save_annotations(image, uploaded_file)
# Footer
st.markdown("---")
st.markdown(
"""
<div style='text-align: center'>
<p><strong>Alyse AI Prescription Annotation Tool v2.0</strong></p>
<p>Created by: Jad Tounsi El Azzoiani and Amine Tahiri</p>
<p>Last Updated: November 2024</p>
</div>
""",
unsafe_allow_html=True
)
if __name__ == "__main__":
st.set_page_config(
page_title="Alyse AI Prescription Annotator",
page_icon="πŸ₯",
layout="wide"
)
main()