luxmorocco commited on
Commit
59e5ee4
1 Parent(s): 108b1ba

Delete README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -68
README.md DELETED
@@ -1,68 +0,0 @@
1
- # YOLO-World + EfficientViT SAM
2
-
3
- 🤗 [HuggingFace Space](https://huggingface.co/spaces/curt-park/yolo-world-with-efficientvit-sam)
4
-
5
- ![example_0](https://github.com/Curt-Park/yolo-world-with-efficientvit-sam/assets/14961526/326bde19-d535-4be5-829e-782fce0c1d00)
6
-
7
- ## Prerequisites
8
- This project is developed and tested on Python3.10.
9
-
10
- ```bash
11
- # Create and activate a python 3.10 environment.
12
- conda create -n yolo-world-with-efficientvit-sam python=3.10 -y
13
- conda activate yolo-world-with-efficientvit-sam
14
- # Setup packages.
15
- make setup
16
- ```
17
-
18
- ## How to Run
19
- ```bash
20
- python app.py
21
- ```
22
-
23
- Open http://127.0.0.1:7860/ on your web browser.
24
-
25
- ![example_1](https://github.com/Curt-Park/yolo-world-with-efficientvit-sam/assets/14961526/9388e4ee-6f71-4428-b17c-d218fd059949)
26
-
27
- ## Core Components
28
-
29
- ### YOLO-World
30
- [YOLO-World](https://github.com/AILab-CVC/YOLO-World) is an open-vocabulary object detection model with high efficiency.
31
- On the challenging LVIS dataset, YOLO-World achieves 35.4 AP with 52.0 FPS on V100,
32
- which outperforms many state-of-the-art methods in terms of both accuracy and speed.
33
- ![image](https://github.com/Curt-Park/yolo-world-with-efficientvit-sam/assets/14961526/8a4a17bd-918d-478a-8451-f58e4a2dce79)
34
- <img width="1024" src="https://github.com/Curt-Park/yolo-world-with-efficientvit-sam/assets/14961526/fce57405-e18d-45f3-bea8-fc3971faf975">
35
-
36
- ### EfficientViT SAM
37
- [EfficientViT SAM](https://github.com/mit-han-lab/efficientvit) is a new family of accelerated segment anything models.
38
- Thanks to the lightweight and hardware-efficient core building block,
39
- it delivers 48.9× measured TensorRT speedup on A100 GPU over SAM-ViT-H without sacrificing performance.
40
-
41
- <img width="1024" src="https://github.com/Curt-Park/yolo-world-with-efficientvit-sam/assets/14961526/9eec003f-47c9-43a5-86b0-82d6689e1bf9">
42
- <img width="1024" src="https://github.com/Curt-Park/yolo-world-with-efficientvit-sam/assets/14961526/d79973bb-0d80-4b64-a175-252de56d0d09">
43
-
44
- ## Powered By
45
- ```
46
- @misc{zhang2024efficientvitsam,
47
- title={EfficientViT-SAM: Accelerated Segment Anything Model Without Performance Loss},
48
- author={Zhuoyang Zhang and Han Cai and Song Han},
49
- year={2024},
50
- eprint={2402.05008},
51
- archivePrefix={arXiv},
52
- primaryClass={cs.CV}
53
- }
54
-
55
- @article{cheng2024yolow,
56
- title={YOLO-World: Real-Time Open-Vocabulary Object Detection},
57
- author={Cheng, Tianheng and Song, Lin and Ge, Yixiao and Liu, Wenyu and Wang, Xinggang and Shan, Ying},
58
- journal={arXiv preprint arXiv:2401.17270},
59
- year={2024}
60
- }
61
-
62
- @article{cai2022efficientvit,
63
- title={Efficientvit: Enhanced linear attention for high-resolution low-computation visual recognition},
64
- author={Cai, Han and Gan, Chuang and Han, Song},
65
- journal={arXiv preprint arXiv:2205.14756},
66
- year={2022}
67
- }
68
- ```