Spaces:
Sleeping
Sleeping
luxmorocco
commited on
Commit
•
9d85691
1
Parent(s):
3a60abf
Update app.py
Browse files
app.py
CHANGED
@@ -60,77 +60,6 @@ class VinDetector(pl.LightningModule):
|
|
60 |
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=6, eta_min=0, verbose=True)
|
61 |
return [optimizer], [scheduler]
|
62 |
|
63 |
-
|
64 |
-
#VBDDataset Class
|
65 |
-
class VBDDataset(Dataset):
|
66 |
-
|
67 |
-
def __init__(self, dataframe, image_dir, transforms=None, phase='train'):
|
68 |
-
super().__init__()
|
69 |
-
|
70 |
-
|
71 |
-
self.image_ids = dataframe['image_id'].unique()
|
72 |
-
self.df = dataframe
|
73 |
-
self.image_dir = image_dir
|
74 |
-
self.transforms = transforms
|
75 |
-
self.phase = phase
|
76 |
-
|
77 |
-
def __getitem__(self, idx):
|
78 |
-
|
79 |
-
image_id = self.image_ids[idx]
|
80 |
-
records = self.df[self.df['image_id'] == image_id]
|
81 |
-
|
82 |
-
|
83 |
-
image = cv2.imread(f'{self.image_dir}/{image_id}.png', cv2.IMREAD_COLOR)
|
84 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB).astype(np.float32)
|
85 |
-
image /= 255.0
|
86 |
-
|
87 |
-
|
88 |
-
if self.phase == 'test':
|
89 |
-
if self.transforms:
|
90 |
-
sample = {
|
91 |
-
'image': image,
|
92 |
-
}
|
93 |
-
sample = self.transforms(**sample)
|
94 |
-
image = sample['image']
|
95 |
-
return image, image_id
|
96 |
-
|
97 |
-
|
98 |
-
boxes = records[['x_min', 'y_min', 'x_max', 'y_max']].values
|
99 |
-
|
100 |
-
|
101 |
-
area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])
|
102 |
-
area = torch.as_tensor(area, dtype=torch.float32)
|
103 |
-
|
104 |
-
|
105 |
-
labels = torch.squeeze(torch.as_tensor((records.class_id.values+1,), dtype=torch.int64))
|
106 |
-
iscrowd = torch.zeros((records.shape[0],), dtype=torch.int64)
|
107 |
-
|
108 |
-
|
109 |
-
target = {}
|
110 |
-
target['boxes'] = boxes
|
111 |
-
target['labels'] = labels
|
112 |
-
target['area'] = area
|
113 |
-
target['image_id'] = torch.tensor([idx])
|
114 |
-
target['iscrowd'] = iscrowd
|
115 |
-
|
116 |
-
|
117 |
-
if self.transforms:
|
118 |
-
sample = {
|
119 |
-
'image': image,
|
120 |
-
'bboxes': target['boxes'],
|
121 |
-
'labels': labels
|
122 |
-
}
|
123 |
-
sample = self.transforms(**sample)
|
124 |
-
image = sample['image']
|
125 |
-
|
126 |
-
target['boxes'] = torch.as_tensor(sample['bboxes'])
|
127 |
-
|
128 |
-
return image, target
|
129 |
-
|
130 |
-
def __len__(self):
|
131 |
-
|
132 |
-
return self.image_ids.shape[0]
|
133 |
-
|
134 |
|
135 |
def get_train_transform():
|
136 |
return A.Compose([
|
|
|
60 |
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=6, eta_min=0, verbose=True)
|
61 |
return [optimizer], [scheduler]
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
def get_train_transform():
|
65 |
return A.Compose([
|