Spaces:
Build error
Build error
import uuid | |
from flask import Flask, render_template, request, redirect, url_for, send_from_directory, session | |
import json | |
import random | |
import os | |
import string | |
import logging | |
from datetime import datetime | |
from huggingface_hub import login, HfApi, hf_hub_download | |
# Set up logging | |
logging.basicConfig(level=logging.INFO, | |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', | |
handlers=[ | |
logging.FileHandler("app.log"), | |
logging.StreamHandler() | |
]) | |
logger = logging.getLogger(__name__) | |
# Use the Hugging Face token from environment variables | |
hf_token = os.environ.get("HF_TOKEN") | |
if hf_token: | |
login(token=hf_token) | |
else: | |
logger.error("HF_TOKEN not found in environment variables") | |
app = Flask(__name__) | |
app.config['SECRET_KEY'] = 'supersecretkey' # Change this to a random secret key | |
# Directories for visualizations | |
VISUALIZATION_DIRS = { | |
"No-XAI": "htmls_NO_XAI_mod", | |
"Dater": "htmls_DATER_mod2", | |
"Chain-of-Table": "htmls_COT_mod", | |
"Plan-of-SQLs": "htmls_POS_mod2" | |
} | |
def get_method_dir(method): | |
if method == 'No-XAI': | |
return 'NO_XAI' | |
elif method == 'Dater': | |
return 'DATER' | |
elif method == 'Chain-of-Table': | |
return 'COT' | |
elif method == 'Plan-of-SQLs': | |
return 'POS' | |
else: | |
return None | |
METHODS = ["No-XAI", "Dater", "Chain-of-Table", "Plan-of-SQLs"] | |
def generate_session_id(): | |
return str(uuid.uuid4()) | |
def save_session_data(session_id, data): | |
try: | |
username = data.get('username', 'unknown') | |
seed = data.get('seed', 'unknown') | |
start_time = data.get('start_time', datetime.now().isoformat()) | |
file_name = f'{username}_seed{seed}_{start_time}_{session_id}_session.json' | |
file_name = "".join(c for c in file_name if c.isalnum() or c in ['_', '-', '.']) | |
json_data = json.dumps(data, indent=4) | |
temp_file_path = f"/tmp/{file_name}" | |
with open(temp_file_path, 'w') as f: | |
f.write(json_data) | |
api = HfApi() | |
repo_path = "session_data_foward_simulation" | |
api.upload_file( | |
path_or_fileobj=temp_file_path, | |
path_in_repo=f"{repo_path}/{file_name}", | |
repo_id="luulinh90s/Tabular-LLM-Study-Data", | |
repo_type="space", | |
) | |
os.remove(temp_file_path) | |
logger.info(f"Session data saved for session {session_id} in Hugging Face Data Space") | |
except Exception as e: | |
logger.exception(f"Error saving session data for session {session_id}: {e}") | |
def load_samples(): | |
common_samples = [] | |
categories = ["TP", "TN", "FP", "FN"] | |
for category in categories: | |
files = set(os.listdir(f'htmls_NO_XAI_mod/{category}')) | |
for method in ["Dater", "Chain-of-Table", "Plan-of-SQLs"]: | |
method_dir = VISUALIZATION_DIRS[method] | |
files &= set(os.listdir(f'{method_dir}/{category}')) | |
for file in files: | |
common_samples.append({'category': category, 'file': file}) | |
logger.info(f"Found {len(common_samples)} common samples across all methods") | |
return common_samples | |
def select_balanced_samples(samples): | |
try: | |
# Separate samples into two groups | |
tp_fp_samples = [s for s in samples if s['category'] in ['TP', 'FP']] | |
tn_fn_samples = [s for s in samples if s['category'] in ['TN', 'FN']] | |
# Check if we have enough samples in each group | |
if len(tp_fp_samples) < 5 or len(tn_fn_samples) < 5: | |
logger.warning(f"Not enough samples in each category. TP+FP: {len(tp_fp_samples)}, TN+FN: {len(tn_fn_samples)}") | |
return samples if len(samples) <= 10 else random.sample(samples, 10) | |
# Select 5 samples from each group | |
selected_tp_fp = random.sample(tp_fp_samples, 5) | |
selected_tn_fn = random.sample(tn_fn_samples, 5) | |
# Combine and shuffle the selected samples | |
selected_samples = selected_tp_fp + selected_tn_fn | |
random.shuffle(selected_samples) | |
logger.info(f"Selected 10 balanced samples: 5 from TP+FP, 5 from TN+FN") | |
return selected_samples | |
except Exception as e: | |
logger.exception("Error selecting balanced samples") | |
return [] | |
def introduction(): | |
return render_template('introduction.html') | |
def attribution(): | |
return render_template('attribution.html') | |
def index(): | |
if request.method == 'POST': | |
username = request.form.get('username') | |
seed = request.form.get('seed') | |
method = request.form.get('method') | |
if not username or not seed or not method: | |
return render_template('index.html', error="Please fill in all fields and select a method.") | |
try: | |
seed = int(seed) | |
random.seed(seed) | |
all_samples = load_samples() | |
selected_samples = select_balanced_samples(all_samples) | |
if len(selected_samples) == 0: | |
return render_template('index.html', error="No common samples were found") | |
start_time = datetime.now().isoformat() | |
session_id = generate_session_id() | |
session_data = { | |
'username': username, | |
'seed': str(seed), | |
'method': method, | |
'selected_samples': selected_samples, | |
'current_index': 0, | |
'responses': [], | |
'start_time': start_time, | |
'session_id': session_id | |
} | |
session['data'] = session_data # Store data in session instead of committing | |
return redirect(url_for('explanation', session_id=session_id)) | |
except Exception as e: | |
logger.exception(f"Error in index route: {e}") | |
return render_template('index.html', error="An error occurred. Please try again.") | |
return render_template('index.html') | |
def explanation(session_id): | |
session_data = session.get('data') | |
if not session_data: | |
return redirect(url_for('index')) | |
method = session_data['method'] | |
if method == 'Chain-of-Table': | |
return render_template('cot_intro.html', session_id=session_id) | |
elif method == 'Plan-of-SQLs': | |
return render_template('pos_intro.html', session_id=session_id) | |
elif method == 'Dater': | |
return render_template('dater_intro.html', session_id=session_id) | |
else: # No-XAI | |
return redirect(url_for('experiment', session_id=session_id)) | |
def experiment(session_id): | |
try: | |
session_data = session.get('data') | |
if not session_data: | |
return redirect(url_for('index')) | |
selected_samples = session_data['selected_samples'] | |
method = session_data['method'] | |
current_index = session_data['current_index'] | |
if current_index >= len(selected_samples): | |
return redirect(url_for('completed', session_id=session_id)) | |
sample = selected_samples[current_index] | |
visualization_dir = VISUALIZATION_DIRS[method] | |
visualization_path = f"{visualization_dir}/{sample['category']}/{sample['file']}" | |
statement = """ | |
Please note that in select row function, starting index is 0 for Chain-of-Table 1 for Dater and Index * represents the selection of the whole Table. | |
Based on the explanation provided, what do you think the AI model will predict? | |
Will it predict the statement as TRUE or FALSE? | |
""" | |
return render_template('experiment.html', | |
sample_id=current_index, | |
statement=statement, | |
visualization=url_for('send_visualization', filename=visualization_path), | |
session_id=session_id, | |
method=method) | |
except Exception as e: | |
logger.exception(f"An error occurred in the experiment route: {e}") | |
return "An error occurred", 500 | |
def subjective(session_id): | |
if request.method == 'POST': | |
understanding = request.form.get('understanding') | |
session_data = session.get('data') | |
if not session_data: | |
logger.error(f"No session data found for session: {session_id}") | |
return redirect(url_for('index')) | |
session_data['subjective_feedback'] = understanding | |
session['data'] = session_data # Update session data | |
return redirect(url_for('completed', session_id=session_id)) | |
return render_template('subjective.html', session_id=session_id) | |
def feedback(): | |
try: | |
session_id = request.form['session_id'] | |
prediction = request.form['prediction'] | |
session_data = session.get('data') | |
if not session_data: | |
logger.error(f"No session data found for session: {session_id}") | |
return redirect(url_for('index')) | |
session_data['responses'].append({ | |
'sample_id': session_data['current_index'], | |
'user_prediction': prediction | |
}) | |
session_data['current_index'] += 1 | |
session['data'] = session_data # Update session data | |
logger.info(f"Prediction saved for session {session_id}, sample {session_data['current_index'] - 1}") | |
if session_data['current_index'] >= len(session_data['selected_samples']): | |
return redirect(url_for('subjective', session_id=session_id)) | |
return redirect(url_for('experiment', session_id=session_id)) | |
except Exception as e: | |
logger.exception(f"Error in feedback route: {e}") | |
return "An error occurred", 500 | |
def completed(session_id): | |
try: | |
session_data = session.get('data') | |
if not session_data: | |
logger.error(f"No session data found for session: {session_id}") | |
return redirect(url_for('index')) | |
session_data['end_time'] = datetime.now().isoformat() | |
responses = session_data['responses'] | |
method = session_data['method'] | |
if method == "Chain-of-Table": | |
json_file = 'Tabular_LLMs_human_study_vis_6_COT.json' | |
elif method == "Plan-of-SQLs": | |
json_file = 'Tabular_LLMs_human_study_vis_6_POS.json' | |
elif method == "Dater": | |
json_file = 'Tabular_LLMs_human_study_vis_6_DATER.json' | |
elif method == "No-XAI": | |
json_file = 'Tabular_LLMs_human_study_vis_6_NO_XAI.json' | |
else: | |
return "Invalid method", 400 | |
with open(json_file, 'r') as f: | |
ground_truth = json.load(f) | |
correct_predictions = 0 | |
true_predictions = 0 | |
false_predictions = 0 | |
for response in responses: | |
sample_id = response['sample_id'] | |
user_prediction = response['user_prediction'] | |
visualization_file = session_data['selected_samples'][sample_id]['file'] | |
index = visualization_file.split('-')[1].split('.')[0] | |
ground_truth_key = f"{get_method_dir(method)}_test-{index}.html" | |
logger.info(f"ground_truth_key: {ground_truth_key}") | |
if ground_truth_key in ground_truth: | |
# TODO: Important Note -> | |
# Using model prediction as we are doing forward simulation | |
# Please use ground_truth[ground_truth_key]['answer'].upper() if running verification task | |
model_prediction = ground_truth[ground_truth_key]['prediction'].upper() | |
if user_prediction.upper() == model_prediction: | |
correct_predictions += 1 | |
if user_prediction.upper() == "TRUE": | |
true_predictions += 1 | |
elif user_prediction.upper() == "FALSE": | |
false_predictions += 1 | |
else: | |
logger.warning(f"Missing key in ground truth: {ground_truth_key}") | |
accuracy = (correct_predictions / len(responses)) * 100 if responses else 0 | |
accuracy = round(accuracy, 2) | |
true_percentage = (true_predictions / len(responses)) * 100 if len(responses) else 0 | |
false_percentage = (false_predictions / len(responses)) * 100 if len(responses) else 0 | |
true_percentage = round(true_percentage, 2) | |
false_percentage = round(false_percentage, 2) | |
session_data['accuracy'] = accuracy | |
session_data['true_percentage'] = true_percentage | |
session_data['false_percentage'] = false_percentage | |
# Save all the data to Hugging Face at the end | |
save_session_data(session_id, session_data) | |
# Clear the session data | |
session.pop('data', None) | |
return render_template('completed.html', | |
accuracy=accuracy, | |
true_percentage=true_percentage, | |
false_percentage=false_percentage) | |
except Exception as e: | |
logger.exception(f"An error occurred in the completed route: {e}") | |
return "An error occurred", 500 | |
def send_visualization(filename): | |
logger.info(f"Attempting to serve file: {filename}") | |
base_dir = os.getcwd() | |
file_path = os.path.normpath(os.path.join(base_dir, filename)) | |
if not file_path.startswith(base_dir): | |
return "Access denied", 403 | |
if not os.path.exists(file_path): | |
return "File not found", 404 | |
directory = os.path.dirname(file_path) | |
file_name = os.path.basename(file_path) | |
logger.info(f"Serving file from directory: {directory}, filename: {file_name}") | |
return send_from_directory(directory, file_name) | |
def send_examples(filename): | |
return send_from_directory('', filename) | |
if __name__ == "__main__": | |
app.run(host="0.0.0.0", port=7860, debug=True) |