Spaces:
Running
Running
Commit
·
48cafca
1
Parent(s):
0410ce8
init commit
Browse files- .gitignore +4 -0
- amr/__init__.py +0 -0
- amr/configs/__init__.py +113 -0
- amr/datasets/__init__.py +0 -0
- amr/datasets/utils.py +1038 -0
- amr/datasets/vitdet_dataset.py +92 -0
- amr/models/__init__.py +28 -0
- amr/models/amr.py +104 -0
- amr/models/backbones/__init__.py +7 -0
- amr/models/backbones/vit.py +384 -0
- amr/models/components/__init__.py +0 -0
- amr/models/components/pose_transformer.py +358 -0
- amr/models/components/t_cond_mlp.py +199 -0
- amr/models/heads/__init__.py +1 -0
- amr/models/heads/smal_head.py +116 -0
- amr/models/smal_warapper.py +128 -0
- amr/utils/__init__.py +21 -0
- amr/utils/geometry.py +105 -0
- amr/utils/pylogger.py +17 -0
- amr/utils/renderer.py +409 -0
- app.py +176 -0
- config/config.yaml +64 -0
- data/my_smpl_00781_4_all.pkl +3 -0
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
example_data
|
2 |
+
*.pyc
|
3 |
+
demo_out
|
4 |
+
logs/
|
amr/__init__.py
ADDED
File without changes
|
amr/configs/__init__.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Dict
|
3 |
+
from yacs.config import CfgNode as CN
|
4 |
+
|
5 |
+
CACHE_DIR_HAMER = "./logs"
|
6 |
+
|
7 |
+
|
8 |
+
def to_lower(x: Dict) -> Dict:
|
9 |
+
"""
|
10 |
+
Convert all dictionary keys to lowercase
|
11 |
+
Args:
|
12 |
+
x (dict): Input dictionary
|
13 |
+
Returns:
|
14 |
+
dict: Output dictionary with all keys converted to lowercase
|
15 |
+
"""
|
16 |
+
return {k.lower(): v for k, v in x.items()}
|
17 |
+
|
18 |
+
|
19 |
+
_C = CN(new_allowed=True)
|
20 |
+
|
21 |
+
_C.GENERAL = CN(new_allowed=True)
|
22 |
+
_C.GENERAL.RESUME = True
|
23 |
+
_C.GENERAL.TIME_TO_RUN = 3300
|
24 |
+
_C.GENERAL.VAL_STEPS = 100
|
25 |
+
_C.GENERAL.LOG_STEPS = 100
|
26 |
+
_C.GENERAL.CHECKPOINT_STEPS = 20000
|
27 |
+
_C.GENERAL.CHECKPOINT_DIR = "checkpoints"
|
28 |
+
_C.GENERAL.SUMMARY_DIR = "tensorboard"
|
29 |
+
_C.GENERAL.NUM_GPUS = 1
|
30 |
+
_C.GENERAL.NUM_WORKERS = 4
|
31 |
+
_C.GENERAL.MIXED_PRECISION = True
|
32 |
+
_C.GENERAL.ALLOW_CUDA = True
|
33 |
+
_C.GENERAL.PIN_MEMORY = False
|
34 |
+
_C.GENERAL.DISTRIBUTED = False
|
35 |
+
_C.GENERAL.LOCAL_RANK = 0
|
36 |
+
_C.GENERAL.USE_SYNCBN = False
|
37 |
+
_C.GENERAL.WORLD_SIZE = 1
|
38 |
+
|
39 |
+
_C.TRAIN = CN(new_allowed=True)
|
40 |
+
_C.TRAIN.NUM_EPOCHS = 100
|
41 |
+
_C.TRAIN.BATCH_SIZE = 32
|
42 |
+
_C.TRAIN.SHUFFLE = True
|
43 |
+
_C.TRAIN.WARMUP = False
|
44 |
+
_C.TRAIN.NORMALIZE_PER_IMAGE = False
|
45 |
+
_C.TRAIN.CLIP_GRAD = False
|
46 |
+
_C.TRAIN.CLIP_GRAD_VALUE = 1.0
|
47 |
+
_C.LOSS_WEIGHTS = CN(new_allowed=True)
|
48 |
+
|
49 |
+
_C.DATASETS = CN(new_allowed=True)
|
50 |
+
|
51 |
+
_C.MODEL = CN(new_allowed=True)
|
52 |
+
_C.MODEL.IMAGE_SIZE = 224
|
53 |
+
|
54 |
+
_C.EXTRA = CN(new_allowed=True)
|
55 |
+
_C.EXTRA.FOCAL_LENGTH = 5000
|
56 |
+
|
57 |
+
_C.DATASETS.CONFIG = CN(new_allowed=True)
|
58 |
+
_C.DATASETS.CONFIG.SCALE_FACTOR = 0.3
|
59 |
+
_C.DATASETS.CONFIG.ROT_FACTOR = 30
|
60 |
+
_C.DATASETS.CONFIG.TRANS_FACTOR = 0.02
|
61 |
+
_C.DATASETS.CONFIG.COLOR_SCALE = 0.2
|
62 |
+
_C.DATASETS.CONFIG.ROT_AUG_RATE = 0.6
|
63 |
+
_C.DATASETS.CONFIG.TRANS_AUG_RATE = 0.5
|
64 |
+
_C.DATASETS.CONFIG.DO_FLIP = False
|
65 |
+
_C.DATASETS.CONFIG.FLIP_AUG_RATE = 0.5
|
66 |
+
_C.DATASETS.CONFIG.EXTREME_CROP_AUG_RATE = 0.10
|
67 |
+
|
68 |
+
|
69 |
+
def default_config() -> CN:
|
70 |
+
"""
|
71 |
+
Get a yacs CfgNode object with the default config values.
|
72 |
+
"""
|
73 |
+
# Return a clone so that the defaults will not be altered
|
74 |
+
# This is for the "local variable" use pattern
|
75 |
+
return _C.clone()
|
76 |
+
|
77 |
+
|
78 |
+
def dataset_config() -> CN:
|
79 |
+
"""
|
80 |
+
Get dataset config file
|
81 |
+
Returns:
|
82 |
+
CfgNode: Dataset config as a yacs CfgNode object.
|
83 |
+
"""
|
84 |
+
cfg = CN(new_allowed=True)
|
85 |
+
config_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'datasets_tar.yaml')
|
86 |
+
cfg.merge_from_file(config_file)
|
87 |
+
cfg.freeze()
|
88 |
+
return cfg
|
89 |
+
|
90 |
+
|
91 |
+
def get_config(config_file: str, merge: bool = True, update_cachedir: bool = False) -> CN:
|
92 |
+
"""
|
93 |
+
Read a config file and optionally merge it with the default config file.
|
94 |
+
Args:
|
95 |
+
config_file (str): Path to config file.
|
96 |
+
merge (bool): Whether to merge with the default config or not.
|
97 |
+
Returns:
|
98 |
+
CfgNode: Config as a yacs CfgNode object.
|
99 |
+
"""
|
100 |
+
if merge:
|
101 |
+
cfg = default_config()
|
102 |
+
else:
|
103 |
+
cfg = CN(new_allowed=True)
|
104 |
+
cfg.merge_from_file(config_file)
|
105 |
+
|
106 |
+
if update_cachedir:
|
107 |
+
def update_path(path: str) -> str:
|
108 |
+
if os.path.isabs(path):
|
109 |
+
return path
|
110 |
+
return os.path.join(CACHE_DIR_HAMER, path)
|
111 |
+
|
112 |
+
cfg.freeze()
|
113 |
+
return cfg
|
amr/datasets/__init__.py
ADDED
File without changes
|
amr/datasets/utils.py
ADDED
@@ -0,0 +1,1038 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Parts of the code are taken or adapted from
|
3 |
+
https://github.com/mkocabas/EpipolarPose/blob/master/lib/utils/img_utils.py
|
4 |
+
"""
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
from skimage.transform import rotate, resize
|
8 |
+
from skimage.filters import gaussian
|
9 |
+
import random
|
10 |
+
import cv2
|
11 |
+
from typing import List, Dict, Tuple
|
12 |
+
from yacs.config import CfgNode
|
13 |
+
from typing import Union
|
14 |
+
|
15 |
+
|
16 |
+
def expand_to_aspect_ratio(input_shape, target_aspect_ratio=None):
|
17 |
+
"""Increase the size of the bounding box to match the target shape."""
|
18 |
+
if target_aspect_ratio is None:
|
19 |
+
return input_shape
|
20 |
+
|
21 |
+
try:
|
22 |
+
w, h = input_shape
|
23 |
+
except (ValueError, TypeError):
|
24 |
+
return input_shape
|
25 |
+
|
26 |
+
w_t, h_t = target_aspect_ratio
|
27 |
+
if h / w < h_t / w_t:
|
28 |
+
h_new = max(w * h_t / w_t, h)
|
29 |
+
w_new = w
|
30 |
+
else:
|
31 |
+
h_new = h
|
32 |
+
w_new = max(h * w_t / h_t, w)
|
33 |
+
if h_new < h or w_new < w:
|
34 |
+
breakpoint()
|
35 |
+
return np.array([w_new, h_new])
|
36 |
+
|
37 |
+
|
38 |
+
def do_augmentation(aug_config: CfgNode) -> Tuple:
|
39 |
+
"""
|
40 |
+
Compute random augmentation parameters.
|
41 |
+
Args:
|
42 |
+
aug_config (CfgNode): Config containing augmentation parameters.
|
43 |
+
Returns:
|
44 |
+
scale (float): Box rescaling factor.
|
45 |
+
rot (float): Random image rotation.
|
46 |
+
do_flip (bool): Whether to flip image or not.
|
47 |
+
do_extreme_crop (bool): Whether to apply extreme cropping (as proposed in EFT).
|
48 |
+
color_scale (List): Color rescaling factor
|
49 |
+
tx (float): Random translation along the x axis.
|
50 |
+
ty (float): Random translation along the y axis.
|
51 |
+
"""
|
52 |
+
|
53 |
+
tx = np.clip(np.random.randn(), -1.0, 1.0) * aug_config.TRANS_FACTOR
|
54 |
+
ty = np.clip(np.random.randn(), -1.0, 1.0) * aug_config.TRANS_FACTOR
|
55 |
+
scale = np.clip(np.random.randn(), -1.0, 1.0) * aug_config.SCALE_FACTOR + 1.0
|
56 |
+
rot = np.clip(np.random.randn(), -2.0,
|
57 |
+
2.0) * aug_config.ROT_FACTOR if random.random() <= aug_config.ROT_AUG_RATE else 0
|
58 |
+
do_flip = aug_config.DO_FLIP and random.random() <= aug_config.FLIP_AUG_RATE
|
59 |
+
do_extreme_crop = random.random() <= aug_config.EXTREME_CROP_AUG_RATE
|
60 |
+
extreme_crop_lvl = aug_config.get('EXTREME_CROP_AUG_LEVEL', 0)
|
61 |
+
# extreme_crop_lvl = 0
|
62 |
+
c_up = 1.0 + aug_config.COLOR_SCALE
|
63 |
+
c_low = 1.0 - aug_config.COLOR_SCALE
|
64 |
+
color_scale = [random.uniform(c_low, c_up), random.uniform(c_low, c_up), random.uniform(c_low, c_up)]
|
65 |
+
return scale, rot, do_flip, do_extreme_crop, extreme_crop_lvl, color_scale, tx, ty
|
66 |
+
|
67 |
+
|
68 |
+
def rotate_2d(pt_2d: np.array, rot_rad: float) -> np.array:
|
69 |
+
"""
|
70 |
+
Rotate a 2D point on the x-y plane.
|
71 |
+
Args:
|
72 |
+
pt_2d (np.array): Input 2D point with shape (2,).
|
73 |
+
rot_rad (float): Rotation angle
|
74 |
+
Returns:
|
75 |
+
np.array: Rotated 2D point.
|
76 |
+
"""
|
77 |
+
x = pt_2d[0]
|
78 |
+
y = pt_2d[1]
|
79 |
+
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
|
80 |
+
xx = x * cs - y * sn
|
81 |
+
yy = x * sn + y * cs
|
82 |
+
return np.array([xx, yy], dtype=np.float32)
|
83 |
+
|
84 |
+
|
85 |
+
def gen_trans_from_patch_cv(c_x: float, c_y: float,
|
86 |
+
src_width: float, src_height: float,
|
87 |
+
dst_width: float, dst_height: float,
|
88 |
+
scale: float, rot: float) -> np.array:
|
89 |
+
"""
|
90 |
+
Create transformation matrix for the bounding box crop.
|
91 |
+
Args:
|
92 |
+
c_x (float): Bounding box center x coordinate in the original image.
|
93 |
+
c_y (float): Bounding box center y coordinate in the original image.
|
94 |
+
src_width (float): Bounding box width.
|
95 |
+
src_height (float): Bounding box height.
|
96 |
+
dst_width (float): Output box width.
|
97 |
+
dst_height (float): Output box height.
|
98 |
+
scale (float): Rescaling factor for the bounding box (augmentation).
|
99 |
+
rot (float): Random rotation applied to the box.
|
100 |
+
Returns:
|
101 |
+
trans (np.array): Target geometric transformation.
|
102 |
+
"""
|
103 |
+
# augment size with scale
|
104 |
+
src_w = src_width * scale
|
105 |
+
src_h = src_height * scale
|
106 |
+
src_center = np.zeros(2)
|
107 |
+
src_center[0] = c_x
|
108 |
+
src_center[1] = c_y
|
109 |
+
# augment rotation
|
110 |
+
rot_rad = np.pi * rot / 180
|
111 |
+
src_downdir = rotate_2d(np.array([0, src_h * 0.5], dtype=np.float32), rot_rad)
|
112 |
+
src_rightdir = rotate_2d(np.array([src_w * 0.5, 0], dtype=np.float32), rot_rad)
|
113 |
+
|
114 |
+
dst_w = dst_width
|
115 |
+
dst_h = dst_height
|
116 |
+
dst_center = np.array([dst_w * 0.5, dst_h * 0.5], dtype=np.float32)
|
117 |
+
dst_downdir = np.array([0, dst_h * 0.5], dtype=np.float32)
|
118 |
+
dst_rightdir = np.array([dst_w * 0.5, 0], dtype=np.float32)
|
119 |
+
|
120 |
+
src = np.zeros((3, 2), dtype=np.float32)
|
121 |
+
src[0, :] = src_center
|
122 |
+
src[1, :] = src_center + src_downdir
|
123 |
+
src[2, :] = src_center + src_rightdir
|
124 |
+
|
125 |
+
dst = np.zeros((3, 2), dtype=np.float32)
|
126 |
+
dst[0, :] = dst_center
|
127 |
+
dst[1, :] = dst_center + dst_downdir
|
128 |
+
dst[2, :] = dst_center + dst_rightdir
|
129 |
+
|
130 |
+
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
|
131 |
+
|
132 |
+
return trans
|
133 |
+
|
134 |
+
|
135 |
+
def trans_point2d(pt_2d: np.array, trans: np.array):
|
136 |
+
"""
|
137 |
+
Transform a 2D point using translation matrix trans.
|
138 |
+
Args:
|
139 |
+
pt_2d (np.array): Input 2D point with shape (2,).
|
140 |
+
trans (np.array): Transformation matrix.
|
141 |
+
Returns:
|
142 |
+
np.array: Transformed 2D point.
|
143 |
+
"""
|
144 |
+
src_pt = np.array([pt_2d[0], pt_2d[1], 1.]).T
|
145 |
+
dst_pt = np.dot(trans, src_pt)
|
146 |
+
return dst_pt[0:2]
|
147 |
+
|
148 |
+
|
149 |
+
def get_transform(center, scale, res, rot=0):
|
150 |
+
"""Generate transformation matrix."""
|
151 |
+
"""Taken from PARE: https://github.com/mkocabas/PARE/blob/6e0caca86c6ab49ff80014b661350958e5b72fd8/pare/utils/image_utils.py"""
|
152 |
+
h = 200 * scale
|
153 |
+
t = np.zeros((3, 3))
|
154 |
+
t[0, 0] = float(res[1]) / h
|
155 |
+
t[1, 1] = float(res[0]) / h
|
156 |
+
t[0, 2] = res[1] * (-float(center[0]) / h + .5)
|
157 |
+
t[1, 2] = res[0] * (-float(center[1]) / h + .5)
|
158 |
+
t[2, 2] = 1
|
159 |
+
if not rot == 0:
|
160 |
+
rot = -rot # To match direction of rotation from cropping
|
161 |
+
rot_mat = np.zeros((3, 3))
|
162 |
+
rot_rad = rot * np.pi / 180
|
163 |
+
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
|
164 |
+
rot_mat[0, :2] = [cs, -sn]
|
165 |
+
rot_mat[1, :2] = [sn, cs]
|
166 |
+
rot_mat[2, 2] = 1
|
167 |
+
# Need to rotate around center
|
168 |
+
t_mat = np.eye(3)
|
169 |
+
t_mat[0, 2] = -res[1] / 2
|
170 |
+
t_mat[1, 2] = -res[0] / 2
|
171 |
+
t_inv = t_mat.copy()
|
172 |
+
t_inv[:2, 2] *= -1
|
173 |
+
t = np.dot(t_inv, np.dot(rot_mat, np.dot(t_mat, t)))
|
174 |
+
return t
|
175 |
+
|
176 |
+
|
177 |
+
def transform(pt, center, scale, res, invert=0, rot=0, as_int=True):
|
178 |
+
"""Transform pixel location to different reference."""
|
179 |
+
"""Taken from PARE: https://github.com/mkocabas/PARE/blob/6e0caca86c6ab49ff80014b661350958e5b72fd8/pare/utils/image_utils.py"""
|
180 |
+
t = get_transform(center, scale, res, rot=rot)
|
181 |
+
if invert:
|
182 |
+
t = np.linalg.inv(t)
|
183 |
+
new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.]).T
|
184 |
+
new_pt = np.dot(t, new_pt)
|
185 |
+
if as_int:
|
186 |
+
new_pt = new_pt.astype(int)
|
187 |
+
return new_pt[:2] + 1
|
188 |
+
|
189 |
+
|
190 |
+
def crop_img(img, ul, br, border_mode=cv2.BORDER_CONSTANT, border_value=0):
|
191 |
+
c_x = (ul[0] + br[0]) / 2
|
192 |
+
c_y = (ul[1] + br[1]) / 2
|
193 |
+
bb_width = patch_width = br[0] - ul[0]
|
194 |
+
bb_height = patch_height = br[1] - ul[1]
|
195 |
+
trans = gen_trans_from_patch_cv(c_x, c_y, bb_width, bb_height, patch_width, patch_height, 1.0, 0)
|
196 |
+
img_patch = cv2.warpAffine(img, trans, (int(patch_width), int(patch_height)),
|
197 |
+
flags=cv2.INTER_LINEAR,
|
198 |
+
borderMode=border_mode,
|
199 |
+
borderValue=border_value
|
200 |
+
)
|
201 |
+
|
202 |
+
# Force borderValue=cv2.BORDER_CONSTANT for alpha channel
|
203 |
+
if (img.shape[2] == 4) and (border_mode != cv2.BORDER_CONSTANT):
|
204 |
+
img_patch[:, :, 3] = cv2.warpAffine(img[:, :, 3], trans, (int(patch_width), int(patch_height)),
|
205 |
+
flags=cv2.INTER_LINEAR,
|
206 |
+
borderMode=cv2.BORDER_CONSTANT,
|
207 |
+
)
|
208 |
+
|
209 |
+
return img_patch
|
210 |
+
|
211 |
+
|
212 |
+
def generate_image_patch_skimage(img: np.array, c_x: float, c_y: float,
|
213 |
+
bb_width: float, bb_height: float,
|
214 |
+
patch_width: float, patch_height: float,
|
215 |
+
do_flip: bool, scale: float, rot: float,
|
216 |
+
border_mode=cv2.BORDER_CONSTANT, border_value=0) -> Tuple[np.array, np.array]:
|
217 |
+
"""
|
218 |
+
Crop image according to the supplied bounding box.
|
219 |
+
Args:
|
220 |
+
img (np.array): Input image of shape (H, W, 3)
|
221 |
+
c_x (float): Bounding box center x coordinate in the original image.
|
222 |
+
c_y (float): Bounding box center y coordinate in the original image.
|
223 |
+
bb_width (float): Bounding box width.
|
224 |
+
bb_height (float): Bounding box height.
|
225 |
+
patch_width (float): Output box width.
|
226 |
+
patch_height (float): Output box height.
|
227 |
+
do_flip (bool): Whether to flip image or not.
|
228 |
+
scale (float): Rescaling factor for the bounding box (augmentation).
|
229 |
+
rot (float): Random rotation applied to the box.
|
230 |
+
Returns:
|
231 |
+
img_patch (np.array): Cropped image patch of shape (patch_height, patch_height, 3)
|
232 |
+
trans (np.array): Transformation matrix.
|
233 |
+
"""
|
234 |
+
|
235 |
+
img_height, img_width, img_channels = img.shape
|
236 |
+
if do_flip:
|
237 |
+
img = img[:, ::-1, :]
|
238 |
+
c_x = img_width - c_x - 1
|
239 |
+
|
240 |
+
trans = gen_trans_from_patch_cv(c_x, c_y, bb_width, bb_height, patch_width, patch_height, scale, rot)
|
241 |
+
|
242 |
+
# img_patch = cv2.warpAffine(img, trans, (int(patch_width), int(patch_height)), flags=cv2.INTER_LINEAR)
|
243 |
+
|
244 |
+
# skimage
|
245 |
+
center = np.zeros(2)
|
246 |
+
center[0] = c_x
|
247 |
+
center[1] = c_y
|
248 |
+
res = np.zeros(2)
|
249 |
+
res[0] = patch_width
|
250 |
+
res[1] = patch_height
|
251 |
+
# assumes bb_width = bb_height
|
252 |
+
# assumes patch_width = patch_height
|
253 |
+
assert bb_width == bb_height, f'{bb_width=} != {bb_height=}'
|
254 |
+
assert patch_width == patch_height, f'{patch_width=} != {patch_height=}'
|
255 |
+
scale1 = scale * bb_width / 200.
|
256 |
+
|
257 |
+
# Upper left point
|
258 |
+
ul = np.array(transform([1, 1], center, scale1, res, invert=1, as_int=False)) - 1
|
259 |
+
# Bottom right point
|
260 |
+
br = np.array(transform([res[0] + 1,
|
261 |
+
res[1] + 1], center, scale1, res, invert=1, as_int=False)) - 1
|
262 |
+
|
263 |
+
# Padding so that when rotated proper amount of context is included
|
264 |
+
try:
|
265 |
+
pad = int(np.linalg.norm(br - ul) / 2 - float(br[1] - ul[1]) / 2) + 1
|
266 |
+
except:
|
267 |
+
breakpoint()
|
268 |
+
if not rot == 0:
|
269 |
+
ul -= pad
|
270 |
+
br += pad
|
271 |
+
|
272 |
+
if False:
|
273 |
+
# Old way of cropping image
|
274 |
+
ul_int = ul.astype(int)
|
275 |
+
br_int = br.astype(int)
|
276 |
+
new_shape = [br_int[1] - ul_int[1], br_int[0] - ul_int[0]]
|
277 |
+
if len(img.shape) > 2:
|
278 |
+
new_shape += [img.shape[2]]
|
279 |
+
new_img = np.zeros(new_shape)
|
280 |
+
|
281 |
+
# Range to fill new array
|
282 |
+
new_x = max(0, -ul_int[0]), min(br_int[0], len(img[0])) - ul_int[0]
|
283 |
+
new_y = max(0, -ul_int[1]), min(br_int[1], len(img)) - ul_int[1]
|
284 |
+
# Range to sample from original image
|
285 |
+
old_x = max(0, ul_int[0]), min(len(img[0]), br_int[0])
|
286 |
+
old_y = max(0, ul_int[1]), min(len(img), br_int[1])
|
287 |
+
new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1],
|
288 |
+
old_x[0]:old_x[1]]
|
289 |
+
|
290 |
+
# New way of cropping image
|
291 |
+
new_img = crop_img(img, ul, br, border_mode=border_mode, border_value=border_value).astype(np.float32)
|
292 |
+
|
293 |
+
# print(f'{new_img.shape=}')
|
294 |
+
# print(f'{new_img1.shape=}')
|
295 |
+
# print(f'{np.allclose(new_img, new_img1)=}')
|
296 |
+
# print(f'{img.dtype=}')
|
297 |
+
|
298 |
+
if not rot == 0:
|
299 |
+
# Remove padding
|
300 |
+
|
301 |
+
new_img = rotate(new_img, rot) # scipy.misc.imrotate(new_img, rot)
|
302 |
+
new_img = new_img[pad:-pad, pad:-pad]
|
303 |
+
|
304 |
+
if new_img.shape[0] < 1 or new_img.shape[1] < 1:
|
305 |
+
print(f'{img.shape=}')
|
306 |
+
print(f'{new_img.shape=}')
|
307 |
+
print(f'{ul=}')
|
308 |
+
print(f'{br=}')
|
309 |
+
print(f'{pad=}')
|
310 |
+
print(f'{rot=}')
|
311 |
+
|
312 |
+
breakpoint()
|
313 |
+
|
314 |
+
# resize image
|
315 |
+
new_img = resize(new_img, res) # scipy.misc.imresize(new_img, res)
|
316 |
+
|
317 |
+
new_img = np.clip(new_img, 0, 255).astype(np.uint8)
|
318 |
+
|
319 |
+
return new_img, trans
|
320 |
+
|
321 |
+
|
322 |
+
def generate_image_patch_cv2(img: np.array, c_x: float, c_y: float,
|
323 |
+
bb_width: float, bb_height: float,
|
324 |
+
patch_width: float, patch_height: float,
|
325 |
+
do_flip: bool, scale: float, rot: float,
|
326 |
+
border_mode=cv2.BORDER_CONSTANT, border_value=0) -> Tuple[np.array, np.array]:
|
327 |
+
"""
|
328 |
+
Crop the input image and return the crop and the corresponding transformation matrix.
|
329 |
+
Args:
|
330 |
+
img (np.array): Input image of shape (H, W, 3)
|
331 |
+
c_x (float): Bounding box center x coordinate in the original image.
|
332 |
+
c_y (float): Bounding box center y coordinate in the original image.
|
333 |
+
bb_width (float): Bounding box width.
|
334 |
+
bb_height (float): Bounding box height.
|
335 |
+
patch_width (float): Output box width.
|
336 |
+
patch_height (float): Output box height.
|
337 |
+
do_flip (bool): Whether to flip image or not.
|
338 |
+
scale (float): Rescaling factor for the bounding box (augmentation).
|
339 |
+
rot (float): Random rotation applied to the box.
|
340 |
+
Returns:
|
341 |
+
img_patch (np.array): Cropped image patch of shape (patch_height, patch_height, 3)
|
342 |
+
trans (np.array): Transformation matrix.
|
343 |
+
"""
|
344 |
+
|
345 |
+
img_height, img_width, img_channels = img.shape
|
346 |
+
if do_flip:
|
347 |
+
img = img[:, ::-1, :]
|
348 |
+
c_x = img_width - c_x - 1
|
349 |
+
|
350 |
+
trans = gen_trans_from_patch_cv(c_x, c_y, bb_width, bb_height, patch_width, patch_height, scale, rot)
|
351 |
+
|
352 |
+
img_patch = cv2.warpAffine(img, trans, (int(patch_width), int(patch_height)),
|
353 |
+
flags=cv2.INTER_LINEAR,
|
354 |
+
borderMode=border_mode,
|
355 |
+
borderValue=border_value,
|
356 |
+
)
|
357 |
+
# Force borderValue=cv2.BORDER_CONSTANT for alpha channel
|
358 |
+
if (img.shape[2] == 4) and (border_mode != cv2.BORDER_CONSTANT):
|
359 |
+
img_patch[:, :, 3] = cv2.warpAffine(img[:, :, 3], trans, (int(patch_width), int(patch_height)),
|
360 |
+
flags=cv2.INTER_LINEAR,
|
361 |
+
borderMode=cv2.BORDER_CONSTANT,
|
362 |
+
)
|
363 |
+
|
364 |
+
return img_patch, trans
|
365 |
+
|
366 |
+
|
367 |
+
def convert_cvimg_to_tensor(cvimg: np.array):
|
368 |
+
"""
|
369 |
+
Convert image from HWC to CHW format.
|
370 |
+
Args:
|
371 |
+
cvimg (np.array): Image of shape (H, W, 3) as loaded by OpenCV.
|
372 |
+
Returns:
|
373 |
+
np.array: Output image of shape (3, H, W).
|
374 |
+
"""
|
375 |
+
# from h,w,c(OpenCV) to c,h,w
|
376 |
+
img = cvimg.copy()
|
377 |
+
img = np.transpose(img, (2, 0, 1))
|
378 |
+
# from int to float
|
379 |
+
img = img.astype(np.float32)
|
380 |
+
return img
|
381 |
+
|
382 |
+
|
383 |
+
def fliplr_params(smal_params: Dict, has_smal_params: Dict) -> Tuple[Dict, Dict]:
|
384 |
+
"""
|
385 |
+
Flip SMAL parameters when flipping the image.
|
386 |
+
Args:
|
387 |
+
smal_params (Dict): SMAL parameter annotations.
|
388 |
+
has_smal_params (Dict): Whether SMAL annotations are valid.
|
389 |
+
Returns:
|
390 |
+
Dict, Dict: Flipped SMAL parameters and valid flags.
|
391 |
+
"""
|
392 |
+
global_orient = smal_params['global_orient'].copy()
|
393 |
+
pose = smal_params['pose'].copy()
|
394 |
+
betas = smal_params['betas'].copy()
|
395 |
+
translation = smal_params['translation'].copy()
|
396 |
+
has_global_orient = has_smal_params['global_orient'].copy()
|
397 |
+
has_pose = has_smal_params['pose'].copy()
|
398 |
+
has_betas = has_smal_params['betas'].copy()
|
399 |
+
has_translation = has_smal_params['translation'].copy()
|
400 |
+
|
401 |
+
global_orient[1::3] *= -1
|
402 |
+
global_orient[2::3] *= -1
|
403 |
+
pose[1::3] *= -1
|
404 |
+
pose[2::3] *= -1
|
405 |
+
translation[1::3] *= -1
|
406 |
+
translation[2::3] *= -1
|
407 |
+
|
408 |
+
smal_params = {'global_orient': global_orient.astype(np.float32),
|
409 |
+
'pose': pose.astype(np.float32),
|
410 |
+
'betas': betas.astype(np.float32),
|
411 |
+
'translation': translation.astype(np.float32)
|
412 |
+
}
|
413 |
+
|
414 |
+
has_smal_params = {'global_orient': has_global_orient,
|
415 |
+
'pose': has_pose,
|
416 |
+
'betas': has_betas,
|
417 |
+
'translation': has_translation
|
418 |
+
}
|
419 |
+
|
420 |
+
return smal_params, has_smal_params
|
421 |
+
|
422 |
+
|
423 |
+
def fliplr_keypoints(joints: np.array, width: float, flip_permutation: List[int]) -> np.array:
|
424 |
+
"""
|
425 |
+
Flip 2D or 3D keypoints.
|
426 |
+
Args:
|
427 |
+
joints (np.array): Array of shape (N, 3) or (N, 4) containing 2D or 3D keypoint locations and confidence.
|
428 |
+
flip_permutation (List): Permutation to apply after flipping.
|
429 |
+
Returns:
|
430 |
+
np.array: Flipped 2D or 3D keypoints with shape (N, 3) or (N, 4) respectively.
|
431 |
+
"""
|
432 |
+
joints = joints.copy()
|
433 |
+
# Flip horizontal
|
434 |
+
joints[:, 0] = width - joints[:, 0] - 1
|
435 |
+
joints = joints[flip_permutation, :]
|
436 |
+
|
437 |
+
return joints
|
438 |
+
|
439 |
+
|
440 |
+
def keypoint_3d_processing(keypoints_3d: np.array, rot: float, filp: bool) -> np.array:
|
441 |
+
"""
|
442 |
+
Process 3D keypoints (rotation/flipping).
|
443 |
+
Args:
|
444 |
+
keypoints_3d (np.array): Input array of shape (N, 4) containing the 3D keypoints and confidence.
|
445 |
+
rot (float): Random rotation applied to the keypoints.
|
446 |
+
Returns:
|
447 |
+
np.array: Transformed 3D keypoints with shape (N, 4).
|
448 |
+
"""
|
449 |
+
# in-plane rotation
|
450 |
+
rot_mat = np.eye(3, dtype=np.float32)
|
451 |
+
if not rot == 0:
|
452 |
+
rot_rad = -rot * np.pi / 180
|
453 |
+
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
|
454 |
+
rot_mat[0, :2] = [cs, -sn]
|
455 |
+
rot_mat[1, :2] = [sn, cs]
|
456 |
+
keypoints_3d[:, :-1] = np.einsum('ij,kj->ki', rot_mat, keypoints_3d[:, :-1])
|
457 |
+
# flip the x coordinates
|
458 |
+
if filp:
|
459 |
+
keypoints_3d = fliplr_keypoints(keypoints_3d, list(range(len(keypoints_3d))))
|
460 |
+
keypoints_3d = keypoints_3d.astype('float32')
|
461 |
+
return keypoints_3d
|
462 |
+
|
463 |
+
|
464 |
+
def rot_aa(aa: np.array, rot: float) -> np.array:
|
465 |
+
"""
|
466 |
+
Rotate axis angle parameters.
|
467 |
+
Args:
|
468 |
+
aa (np.array): Axis-angle vector of shape (3,).
|
469 |
+
rot (np.array): Rotation angle in degrees.
|
470 |
+
Returns:
|
471 |
+
np.array: Rotated axis-angle vector.
|
472 |
+
"""
|
473 |
+
# pose parameters
|
474 |
+
R = np.array([[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0],
|
475 |
+
[np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0],
|
476 |
+
[0, 0, 1]])
|
477 |
+
# find the rotation of the hand in camera frame
|
478 |
+
per_rdg, _ = cv2.Rodrigues(aa)
|
479 |
+
# apply the global rotation to the global orientation
|
480 |
+
resrot, _ = cv2.Rodrigues(np.dot(R, per_rdg))
|
481 |
+
aa = (resrot.T)[0]
|
482 |
+
return aa.astype(np.float32)
|
483 |
+
|
484 |
+
|
485 |
+
def smal_param_processing(smal_params: Dict, has_smal_params: Dict, rot: float, do_flip: bool) -> Tuple[Dict, Dict]:
|
486 |
+
"""
|
487 |
+
Apply random augmentations to the SMAL parameters.
|
488 |
+
Args:
|
489 |
+
smal_params (Dict): SMAL parameter annotations.
|
490 |
+
has_smal_params (Dict): Whether SMAL annotations are valid.
|
491 |
+
rot (float): Random rotation applied to the keypoints.
|
492 |
+
do_flip (bool): Whether to flip keypoints or not.
|
493 |
+
Returns:
|
494 |
+
Dict, Dict: Transformed SMAL parameters and valid flags.
|
495 |
+
"""
|
496 |
+
if do_flip:
|
497 |
+
smal_params, has_smal_params = fliplr_params(smal_params, has_smal_params)
|
498 |
+
smal_params['global_orient'] = rot_aa(smal_params['global_orient'], rot)
|
499 |
+
# camera location is not change, so the translation is not change too.
|
500 |
+
# smal_params['transl'] = np.dot(np.array([[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0],
|
501 |
+
# [np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0],
|
502 |
+
# [0, 0, 1]], dtype=np.float32), smal_params['transl'])
|
503 |
+
return smal_params, has_smal_params
|
504 |
+
|
505 |
+
|
506 |
+
def get_example(img_path: Union[str,np.ndarray], center_x: float, center_y: float,
|
507 |
+
width: float, height: float,
|
508 |
+
keypoints_2d: np.array, keypoints_3d: np.array,
|
509 |
+
smal_params: Dict, has_smal_params: Dict,
|
510 |
+
patch_width: int, patch_height: int,
|
511 |
+
mean: np.array, std: np.array,
|
512 |
+
do_augment: bool, augm_config: CfgNode,
|
513 |
+
is_bgr: bool = True,
|
514 |
+
use_skimage_antialias: bool = False,
|
515 |
+
border_mode: int = cv2.BORDER_CONSTANT,
|
516 |
+
return_trans: bool = False,) -> Tuple:
|
517 |
+
"""
|
518 |
+
Get an example from the dataset and (possibly) apply random augmentations.
|
519 |
+
Args:
|
520 |
+
img_path (str): Image filename
|
521 |
+
center_x (float): Bounding box center x coordinate in the original image.
|
522 |
+
center_y (float): Bounding box center y coordinate in the original image.
|
523 |
+
width (float): Bounding box width.
|
524 |
+
height (float): Bounding box height.
|
525 |
+
keypoints_2d (np.array): Array with shape (N,3) containing the 2D keypoints in the original image coordinates.
|
526 |
+
keypoints_3d (np.array): Array with shape (N,4) containing the 3D keypoints.
|
527 |
+
smal_params (Dict): SMAL parameter annotations.
|
528 |
+
has_smal_params (Dict): Whether SMAL annotations are valid.
|
529 |
+
patch_width (float): Output box width.
|
530 |
+
patch_height (float): Output box height.
|
531 |
+
mean (np.array): Array of shape (3,) containing the mean for normalizing the input image.
|
532 |
+
std (np.array): Array of shape (3,) containing the std for normalizing the input image.
|
533 |
+
do_augment (bool): Whether to apply data augmentation or not.
|
534 |
+
aug_config (CfgNode): Config containing augmentation parameters.
|
535 |
+
Returns:
|
536 |
+
return img_patch, keypoints_2d, keypoints_3d, smal_params, has_smal_params, img_size
|
537 |
+
img_patch (np.array): Cropped image patch of shape (3, patch_height, patch_height)
|
538 |
+
keypoints_2d (np.array): Array with shape (N,3) containing the transformed 2D keypoints.
|
539 |
+
keypoints_3d (np.array): Array with shape (N,4) containing the transformed 3D keypoints.
|
540 |
+
smal_params (Dict): Transformed SMAL parameters.
|
541 |
+
has_smal_params (Dict): Valid flag for transformed SMAL parameters.
|
542 |
+
img_size (np.array): Image size of the original image.
|
543 |
+
"""
|
544 |
+
if isinstance(img_path, str):
|
545 |
+
# 1. load image
|
546 |
+
cvimg = cv2.imread(img_path, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
|
547 |
+
if not isinstance(cvimg, np.ndarray):
|
548 |
+
raise IOError("Fail to read %s" % img_path)
|
549 |
+
elif isinstance(img_path, np.ndarray):
|
550 |
+
cvimg = img_path
|
551 |
+
else:
|
552 |
+
raise TypeError('img_path must be either a string or a numpy array')
|
553 |
+
img_height, img_width, img_channels = cvimg.shape
|
554 |
+
|
555 |
+
img_size = np.array([img_height, img_width], dtype=np.int32)
|
556 |
+
|
557 |
+
# 2. get augmentation params
|
558 |
+
if do_augment:
|
559 |
+
# box rescale factor, rotation angle, flip or not flip, crop or not crop, ..., color scale, translation x, ...
|
560 |
+
scale, rot, do_flip, do_extreme_crop, extreme_crop_lvl, color_scale, tx, ty = do_augmentation(augm_config)
|
561 |
+
else:
|
562 |
+
scale, rot, do_flip, do_extreme_crop, extreme_crop_lvl, color_scale, tx, ty = 1.0, 0, False, False, 0, [1.0,
|
563 |
+
1.0,
|
564 |
+
1.0], 0., 0.
|
565 |
+
if width < 1 or height < 1:
|
566 |
+
breakpoint()
|
567 |
+
|
568 |
+
if do_extreme_crop:
|
569 |
+
if extreme_crop_lvl == 0:
|
570 |
+
center_x1, center_y1, width1, height1 = extreme_cropping(center_x, center_y, width, height, keypoints_2d)
|
571 |
+
elif extreme_crop_lvl == 1:
|
572 |
+
center_x1, center_y1, width1, height1 = extreme_cropping_aggressive(center_x, center_y, width, height,
|
573 |
+
keypoints_2d)
|
574 |
+
|
575 |
+
THRESH = 4
|
576 |
+
if width1 < THRESH or height1 < THRESH:
|
577 |
+
# print(f'{do_extreme_crop=}')
|
578 |
+
# print(f'width: {width}, height: {height}')
|
579 |
+
# print(f'width1: {width1}, height1: {height1}')
|
580 |
+
# print(f'center_x: {center_x}, center_y: {center_y}')
|
581 |
+
# print(f'center_x1: {center_x1}, center_y1: {center_y1}')
|
582 |
+
# print(f'keypoints_2d: {keypoints_2d}')
|
583 |
+
# print(f'\n\n', flush=True)
|
584 |
+
# breakpoint()
|
585 |
+
pass
|
586 |
+
# print(f'skip ==> width1: {width1}, height1: {height1}, width: {width}, height: {height}')
|
587 |
+
else:
|
588 |
+
center_x, center_y, width, height = center_x1, center_y1, width1, height1
|
589 |
+
|
590 |
+
center_x += width * tx
|
591 |
+
center_y += height * ty
|
592 |
+
|
593 |
+
# Process 3D keypoints
|
594 |
+
keypoints_3d = keypoint_3d_processing(keypoints_3d, rot, do_flip)
|
595 |
+
|
596 |
+
# 3. generate image patch
|
597 |
+
if use_skimage_antialias:
|
598 |
+
# Blur image to avoid aliasing artifacts
|
599 |
+
downsampling_factor = (patch_width / (width * scale))
|
600 |
+
if downsampling_factor > 1.1:
|
601 |
+
cvimg = gaussian(cvimg, sigma=(downsampling_factor - 1) / 2, channel_axis=2, preserve_range=True,
|
602 |
+
truncate=3.0)
|
603 |
+
# augmentation image, translation matrix
|
604 |
+
img_patch_cv, trans = generate_image_patch_cv2(cvimg,
|
605 |
+
center_x, center_y,
|
606 |
+
width, height,
|
607 |
+
patch_width, patch_height,
|
608 |
+
do_flip, scale, rot,
|
609 |
+
border_mode=border_mode)
|
610 |
+
# img_patch_cv, trans = generate_image_patch_skimage(cvimg,
|
611 |
+
# center_x, center_y,
|
612 |
+
# width, height,
|
613 |
+
# patch_width, patch_height,
|
614 |
+
# do_flip, scale, rot,
|
615 |
+
# border_mode=border_mode)
|
616 |
+
|
617 |
+
image = img_patch_cv.copy()
|
618 |
+
if is_bgr:
|
619 |
+
image = image[:, :, ::-1]
|
620 |
+
img_patch_cv = image.copy()
|
621 |
+
img_patch = convert_cvimg_to_tensor(image) # [h, w, 4] -> [4, h, w]
|
622 |
+
|
623 |
+
smal_params, has_smal_params = smal_param_processing(smal_params, has_smal_params, rot, do_flip)
|
624 |
+
|
625 |
+
# apply normalization
|
626 |
+
for n_c in range(min(img_channels, 3)):
|
627 |
+
img_patch[n_c, :, :] = np.clip(img_patch[n_c, :, :] * color_scale[n_c], 0, 255)
|
628 |
+
if mean is not None and std is not None:
|
629 |
+
img_patch[n_c, :, :] = (img_patch[n_c, :, :] - mean[n_c]) / std[n_c]
|
630 |
+
|
631 |
+
if do_flip:
|
632 |
+
keypoints_2d = fliplr_keypoints(keypoints_2d, img_width, list(range(len(keypoints_2d))))
|
633 |
+
|
634 |
+
for n_jt in range(len(keypoints_2d)):
|
635 |
+
keypoints_2d[n_jt, 0:2] = trans_point2d(keypoints_2d[n_jt, 0:2], trans)
|
636 |
+
keypoints_2d[:, :-1] = keypoints_2d[:, :-1] / patch_width - 0.5
|
637 |
+
|
638 |
+
if not return_trans:
|
639 |
+
return img_patch, keypoints_2d, keypoints_3d, smal_params, has_smal_params, img_size
|
640 |
+
else:
|
641 |
+
return img_patch, keypoints_2d, keypoints_3d, smal_params, has_smal_params, img_size, trans
|
642 |
+
|
643 |
+
|
644 |
+
def crop_to_hips(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array) -> Tuple:
|
645 |
+
"""
|
646 |
+
Extreme cropping: Crop the box up to the hip locations.
|
647 |
+
Args:
|
648 |
+
center_x (float): x coordinate of the bounding box center.
|
649 |
+
center_y (float): y coordinate of the bounding box center.
|
650 |
+
width (float): Bounding box width.
|
651 |
+
height (float): Bounding box height.
|
652 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
653 |
+
Returns:
|
654 |
+
center_x (float): x coordinate of the new bounding box center.
|
655 |
+
center_y (float): y coordinate of the new bounding box center.
|
656 |
+
width (float): New bounding box width.
|
657 |
+
height (float): New bounding box height.
|
658 |
+
"""
|
659 |
+
keypoints_2d = keypoints_2d.copy()
|
660 |
+
lower_body_keypoints = [10, 11, 13, 14, 19, 20, 21, 22, 23, 24, 25 + 0, 25 + 1, 25 + 4, 25 + 5]
|
661 |
+
keypoints_2d[lower_body_keypoints, :] = 0
|
662 |
+
if keypoints_2d[:, -1].sum() > 1:
|
663 |
+
center, scale = get_bbox(keypoints_2d)
|
664 |
+
center_x = center[0]
|
665 |
+
center_y = center[1]
|
666 |
+
width = 1.1 * scale[0]
|
667 |
+
height = 1.1 * scale[1]
|
668 |
+
return center_x, center_y, width, height
|
669 |
+
|
670 |
+
|
671 |
+
def crop_to_shoulders(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
|
672 |
+
"""
|
673 |
+
Extreme cropping: Crop the box up to the shoulder locations.
|
674 |
+
Args:
|
675 |
+
center_x (float): x coordinate of the bounding box center.
|
676 |
+
center_y (float): y coordinate of the bounding box center.
|
677 |
+
width (float): Bounding box width.
|
678 |
+
height (float): Bounding box height.
|
679 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
680 |
+
Returns:
|
681 |
+
center_x (float): x coordinate of the new bounding box center.
|
682 |
+
center_y (float): y coordinate of the new bounding box center.
|
683 |
+
width (float): New bounding box width.
|
684 |
+
height (float): New bounding box height.
|
685 |
+
"""
|
686 |
+
keypoints_2d = keypoints_2d.copy()
|
687 |
+
lower_body_keypoints = [3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24] + [25 + i for i in
|
688 |
+
[0, 1, 2, 3, 4, 5, 6, 7,
|
689 |
+
10, 11, 14, 15, 16]]
|
690 |
+
keypoints_2d[lower_body_keypoints, :] = 0
|
691 |
+
center, scale = get_bbox(keypoints_2d)
|
692 |
+
if keypoints_2d[:, -1].sum() > 1:
|
693 |
+
center, scale = get_bbox(keypoints_2d)
|
694 |
+
center_x = center[0]
|
695 |
+
center_y = center[1]
|
696 |
+
width = 1.2 * scale[0]
|
697 |
+
height = 1.2 * scale[1]
|
698 |
+
return center_x, center_y, width, height
|
699 |
+
|
700 |
+
|
701 |
+
def crop_to_head(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
|
702 |
+
"""
|
703 |
+
Extreme cropping: Crop the box and keep on only the head.
|
704 |
+
Args:
|
705 |
+
center_x (float): x coordinate of the bounding box center.
|
706 |
+
center_y (float): y coordinate of the bounding box center.
|
707 |
+
width (float): Bounding box width.
|
708 |
+
height (float): Bounding box height.
|
709 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
710 |
+
Returns:
|
711 |
+
center_x (float): x coordinate of the new bounding box center.
|
712 |
+
center_y (float): y coordinate of the new bounding box center.
|
713 |
+
width (float): New bounding box width.
|
714 |
+
height (float): New bounding box height.
|
715 |
+
"""
|
716 |
+
keypoints_2d = keypoints_2d.copy()
|
717 |
+
lower_body_keypoints = [3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24] + [25 + i for i in
|
718 |
+
[0, 1, 2, 3, 4, 5, 6, 7, 8,
|
719 |
+
9, 10, 11, 14, 15, 16]]
|
720 |
+
keypoints_2d[lower_body_keypoints, :] = 0
|
721 |
+
if keypoints_2d[:, -1].sum() > 1:
|
722 |
+
center, scale = get_bbox(keypoints_2d)
|
723 |
+
center_x = center[0]
|
724 |
+
center_y = center[1]
|
725 |
+
width = 1.3 * scale[0]
|
726 |
+
height = 1.3 * scale[1]
|
727 |
+
return center_x, center_y, width, height
|
728 |
+
|
729 |
+
|
730 |
+
def crop_torso_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
|
731 |
+
"""
|
732 |
+
Extreme cropping: Crop the box and keep on only the torso.
|
733 |
+
Args:
|
734 |
+
center_x (float): x coordinate of the bounding box center.
|
735 |
+
center_y (float): y coordinate of the bounding box center.
|
736 |
+
width (float): Bounding box width.
|
737 |
+
height (float): Bounding box height.
|
738 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
739 |
+
Returns:
|
740 |
+
center_x (float): x coordinate of the new bounding box center.
|
741 |
+
center_y (float): y coordinate of the new bounding box center.
|
742 |
+
width (float): New bounding box width.
|
743 |
+
height (float): New bounding box height.
|
744 |
+
"""
|
745 |
+
keypoints_2d = keypoints_2d.copy()
|
746 |
+
nontorso_body_keypoints = [0, 3, 4, 6, 7, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] + [25 + i for i in
|
747 |
+
[0, 1, 4, 5, 6,
|
748 |
+
7, 10, 11, 13,
|
749 |
+
17, 18]]
|
750 |
+
keypoints_2d[nontorso_body_keypoints, :] = 0
|
751 |
+
if keypoints_2d[:, -1].sum() > 1:
|
752 |
+
center, scale = get_bbox(keypoints_2d)
|
753 |
+
center_x = center[0]
|
754 |
+
center_y = center[1]
|
755 |
+
width = 1.1 * scale[0]
|
756 |
+
height = 1.1 * scale[1]
|
757 |
+
return center_x, center_y, width, height
|
758 |
+
|
759 |
+
|
760 |
+
def crop_rightarm_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
|
761 |
+
"""
|
762 |
+
Extreme cropping: Crop the box and keep on only the right arm.
|
763 |
+
Args:
|
764 |
+
center_x (float): x coordinate of the bounding box center.
|
765 |
+
center_y (float): y coordinate of the bounding box center.
|
766 |
+
width (float): Bounding box width.
|
767 |
+
height (float): Bounding box height.
|
768 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
769 |
+
Returns:
|
770 |
+
center_x (float): x coordinate of the new bounding box center.
|
771 |
+
center_y (float): y coordinate of the new bounding box center.
|
772 |
+
width (float): New bounding box width.
|
773 |
+
height (float): New bounding box height.
|
774 |
+
"""
|
775 |
+
keypoints_2d = keypoints_2d.copy()
|
776 |
+
nonrightarm_body_keypoints = [0, 1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] + [
|
777 |
+
25 + i for i in [0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]]
|
778 |
+
keypoints_2d[nonrightarm_body_keypoints, :] = 0
|
779 |
+
if keypoints_2d[:, -1].sum() > 1:
|
780 |
+
center, scale = get_bbox(keypoints_2d)
|
781 |
+
center_x = center[0]
|
782 |
+
center_y = center[1]
|
783 |
+
width = 1.1 * scale[0]
|
784 |
+
height = 1.1 * scale[1]
|
785 |
+
return center_x, center_y, width, height
|
786 |
+
|
787 |
+
|
788 |
+
def crop_leftarm_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
|
789 |
+
"""
|
790 |
+
Extreme cropping: Crop the box and keep on only the left arm.
|
791 |
+
Args:
|
792 |
+
center_x (float): x coordinate of the bounding box center.
|
793 |
+
center_y (float): y coordinate of the bounding box center.
|
794 |
+
width (float): Bounding box width.
|
795 |
+
height (float): Bounding box height.
|
796 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
797 |
+
Returns:
|
798 |
+
center_x (float): x coordinate of the new bounding box center.
|
799 |
+
center_y (float): y coordinate of the new bounding box center.
|
800 |
+
width (float): New bounding box width.
|
801 |
+
height (float): New bounding box height.
|
802 |
+
"""
|
803 |
+
keypoints_2d = keypoints_2d.copy()
|
804 |
+
nonleftarm_body_keypoints = [0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] + [
|
805 |
+
25 + i for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16, 17, 18]]
|
806 |
+
keypoints_2d[nonleftarm_body_keypoints, :] = 0
|
807 |
+
if keypoints_2d[:, -1].sum() > 1:
|
808 |
+
center, scale = get_bbox(keypoints_2d)
|
809 |
+
center_x = center[0]
|
810 |
+
center_y = center[1]
|
811 |
+
width = 1.1 * scale[0]
|
812 |
+
height = 1.1 * scale[1]
|
813 |
+
return center_x, center_y, width, height
|
814 |
+
|
815 |
+
|
816 |
+
def crop_legs_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
|
817 |
+
"""
|
818 |
+
Extreme cropping: Crop the box and keep on only the legs.
|
819 |
+
Args:
|
820 |
+
center_x (float): x coordinate of the bounding box center.
|
821 |
+
center_y (float): y coordinate of the bounding box center.
|
822 |
+
width (float): Bounding box width.
|
823 |
+
height (float): Bounding box height.
|
824 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
825 |
+
Returns:
|
826 |
+
center_x (float): x coordinate of the new bounding box center.
|
827 |
+
center_y (float): y coordinate of the new bounding box center.
|
828 |
+
width (float): New bounding box width.
|
829 |
+
height (float): New bounding box height.
|
830 |
+
"""
|
831 |
+
keypoints_2d = keypoints_2d.copy()
|
832 |
+
nonlegs_body_keypoints = [0, 1, 2, 3, 4, 5, 6, 7, 15, 16, 17, 18] + [25 + i for i in
|
833 |
+
[6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18]]
|
834 |
+
keypoints_2d[nonlegs_body_keypoints, :] = 0
|
835 |
+
if keypoints_2d[:, -1].sum() > 1:
|
836 |
+
center, scale = get_bbox(keypoints_2d)
|
837 |
+
center_x = center[0]
|
838 |
+
center_y = center[1]
|
839 |
+
width = 1.1 * scale[0]
|
840 |
+
height = 1.1 * scale[1]
|
841 |
+
return center_x, center_y, width, height
|
842 |
+
|
843 |
+
|
844 |
+
def crop_rightleg_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
|
845 |
+
"""
|
846 |
+
Extreme cropping: Crop the box and keep on only the right leg.
|
847 |
+
Args:
|
848 |
+
center_x (float): x coordinate of the bounding box center.
|
849 |
+
center_y (float): y coordinate of the bounding box center.
|
850 |
+
width (float): Bounding box width.
|
851 |
+
height (float): Bounding box height.
|
852 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
853 |
+
Returns:
|
854 |
+
center_x (float): x coordinate of the new bounding box center.
|
855 |
+
center_y (float): y coordinate of the new bounding box center.
|
856 |
+
width (float): New bounding box width.
|
857 |
+
height (float): New bounding box height.
|
858 |
+
"""
|
859 |
+
keypoints_2d = keypoints_2d.copy()
|
860 |
+
nonrightleg_body_keypoints = [0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] + [25 + i for i in
|
861 |
+
[3, 4, 5, 6, 7,
|
862 |
+
8, 9, 10, 11,
|
863 |
+
12, 13, 14, 15,
|
864 |
+
16, 17, 18]]
|
865 |
+
keypoints_2d[nonrightleg_body_keypoints, :] = 0
|
866 |
+
if keypoints_2d[:, -1].sum() > 1:
|
867 |
+
center, scale = get_bbox(keypoints_2d)
|
868 |
+
center_x = center[0]
|
869 |
+
center_y = center[1]
|
870 |
+
width = 1.1 * scale[0]
|
871 |
+
height = 1.1 * scale[1]
|
872 |
+
return center_x, center_y, width, height
|
873 |
+
|
874 |
+
|
875 |
+
def crop_leftleg_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
|
876 |
+
"""
|
877 |
+
Extreme cropping: Crop the box and keep on only the left leg.
|
878 |
+
Args:
|
879 |
+
center_x (float): x coordinate of the bounding box center.
|
880 |
+
center_y (float): y coordinate of the bounding box center.
|
881 |
+
width (float): Bounding box width.
|
882 |
+
height (float): Bounding box height.
|
883 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
884 |
+
Returns:
|
885 |
+
center_x (float): x coordinate of the new bounding box center.
|
886 |
+
center_y (float): y coordinate of the new bounding box center.
|
887 |
+
width (float): New bounding box width.
|
888 |
+
height (float): New bounding box height.
|
889 |
+
"""
|
890 |
+
keypoints_2d = keypoints_2d.copy()
|
891 |
+
nonleftleg_body_keypoints = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16, 17, 18, 22, 23, 24] + [25 + i for i in
|
892 |
+
[0, 1, 2, 6, 7, 8,
|
893 |
+
9, 10, 11, 12,
|
894 |
+
13, 14, 15, 16,
|
895 |
+
17, 18]]
|
896 |
+
keypoints_2d[nonleftleg_body_keypoints, :] = 0
|
897 |
+
if keypoints_2d[:, -1].sum() > 1:
|
898 |
+
center, scale = get_bbox(keypoints_2d)
|
899 |
+
center_x = center[0]
|
900 |
+
center_y = center[1]
|
901 |
+
width = 1.1 * scale[0]
|
902 |
+
height = 1.1 * scale[1]
|
903 |
+
return center_x, center_y, width, height
|
904 |
+
|
905 |
+
|
906 |
+
def full_body(keypoints_2d: np.array) -> bool:
|
907 |
+
"""
|
908 |
+
Check if all main body joints are visible.
|
909 |
+
Args:
|
910 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
911 |
+
Returns:
|
912 |
+
bool: True if all main body joints are visible.
|
913 |
+
"""
|
914 |
+
|
915 |
+
body_keypoints_openpose = [2, 3, 4, 5, 6, 7, 10, 11, 13, 14]
|
916 |
+
body_keypoints = [25 + i for i in [8, 7, 6, 9, 10, 11, 1, 0, 4, 5]]
|
917 |
+
return (np.maximum(keypoints_2d[body_keypoints, -1], keypoints_2d[body_keypoints_openpose, -1]) > 0).sum() == len(
|
918 |
+
body_keypoints)
|
919 |
+
|
920 |
+
|
921 |
+
def upper_body(keypoints_2d: np.array):
|
922 |
+
"""
|
923 |
+
Check if all upper body joints are visible.
|
924 |
+
Args:
|
925 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
926 |
+
Returns:
|
927 |
+
bool: True if all main body joints are visible.
|
928 |
+
"""
|
929 |
+
lower_body_keypoints_openpose = [10, 11, 13, 14]
|
930 |
+
lower_body_keypoints = [25 + i for i in [1, 0, 4, 5]]
|
931 |
+
upper_body_keypoints_openpose = [0, 1, 15, 16, 17, 18]
|
932 |
+
upper_body_keypoints = [25 + 8, 25 + 9, 25 + 12, 25 + 13, 25 + 17, 25 + 18]
|
933 |
+
return ((keypoints_2d[lower_body_keypoints + lower_body_keypoints_openpose, -1] > 0).sum() == 0) \
|
934 |
+
and ((keypoints_2d[upper_body_keypoints + upper_body_keypoints_openpose, -1] > 0).sum() >= 2)
|
935 |
+
|
936 |
+
|
937 |
+
def get_bbox(keypoints_2d: np.array, rescale: float = 1.2) -> Tuple:
|
938 |
+
"""
|
939 |
+
Get center and scale for bounding box from openpose detections.
|
940 |
+
Args:
|
941 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
942 |
+
rescale (float): Scale factor to rescale bounding boxes computed from the keypoints.
|
943 |
+
Returns:
|
944 |
+
center (np.array): Array of shape (2,) containing the new bounding box center.
|
945 |
+
scale (float): New bounding box scale.
|
946 |
+
"""
|
947 |
+
valid = keypoints_2d[:, -1] > 0
|
948 |
+
valid_keypoints = keypoints_2d[valid][:, :-1]
|
949 |
+
center = 0.5 * (valid_keypoints.max(axis=0) + valid_keypoints.min(axis=0))
|
950 |
+
bbox_size = (valid_keypoints.max(axis=0) - valid_keypoints.min(axis=0))
|
951 |
+
# adjust bounding box tightness
|
952 |
+
scale = bbox_size
|
953 |
+
scale *= rescale
|
954 |
+
return center, scale
|
955 |
+
|
956 |
+
|
957 |
+
def extreme_cropping(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array) -> Tuple:
|
958 |
+
"""
|
959 |
+
Perform extreme cropping
|
960 |
+
Args:
|
961 |
+
center_x (float): x coordinate of bounding box center.
|
962 |
+
center_y (float): y coordinate of bounding box center.
|
963 |
+
width (float): bounding box width.
|
964 |
+
height (float): bounding box height.
|
965 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
966 |
+
rescale (float): Scale factor to rescale bounding boxes computed from the keypoints.
|
967 |
+
Returns:
|
968 |
+
center_x (float): x coordinate of bounding box center.
|
969 |
+
center_y (float): y coordinate of bounding box center.
|
970 |
+
width (float): bounding box width.
|
971 |
+
height (float): bounding box height.
|
972 |
+
"""
|
973 |
+
p = torch.rand(1).item()
|
974 |
+
if full_body(keypoints_2d):
|
975 |
+
if p < 0.7:
|
976 |
+
center_x, center_y, width, height = crop_to_hips(center_x, center_y, width, height, keypoints_2d)
|
977 |
+
elif p < 0.9:
|
978 |
+
center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d)
|
979 |
+
else:
|
980 |
+
center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d)
|
981 |
+
elif upper_body(keypoints_2d):
|
982 |
+
if p < 0.9:
|
983 |
+
center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d)
|
984 |
+
else:
|
985 |
+
center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d)
|
986 |
+
|
987 |
+
return center_x, center_y, max(width, height), max(width, height)
|
988 |
+
|
989 |
+
|
990 |
+
def extreme_cropping_aggressive(center_x: float, center_y: float, width: float, height: float,
|
991 |
+
keypoints_2d: np.array) -> Tuple:
|
992 |
+
"""
|
993 |
+
Perform aggressive extreme cropping
|
994 |
+
Args:
|
995 |
+
center_x (float): x coordinate of bounding box center.
|
996 |
+
center_y (float): y coordinate of bounding box center.
|
997 |
+
width (float): bounding box width.
|
998 |
+
height (float): bounding box height.
|
999 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
1000 |
+
rescale (float): Scale factor to rescale bounding boxes computed from the keypoints.
|
1001 |
+
Returns:
|
1002 |
+
center_x (float): x coordinate of bounding box center.
|
1003 |
+
center_y (float): y coordinate of bounding box center.
|
1004 |
+
width (float): bounding box width.
|
1005 |
+
height (float): bounding box height.
|
1006 |
+
"""
|
1007 |
+
p = torch.rand(1).item()
|
1008 |
+
if full_body(keypoints_2d):
|
1009 |
+
if p < 0.2:
|
1010 |
+
center_x, center_y, width, height = crop_to_hips(center_x, center_y, width, height, keypoints_2d)
|
1011 |
+
elif p < 0.3:
|
1012 |
+
center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d)
|
1013 |
+
elif p < 0.4:
|
1014 |
+
center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d)
|
1015 |
+
elif p < 0.5:
|
1016 |
+
center_x, center_y, width, height = crop_torso_only(center_x, center_y, width, height, keypoints_2d)
|
1017 |
+
elif p < 0.6:
|
1018 |
+
center_x, center_y, width, height = crop_rightarm_only(center_x, center_y, width, height, keypoints_2d)
|
1019 |
+
elif p < 0.7:
|
1020 |
+
center_x, center_y, width, height = crop_leftarm_only(center_x, center_y, width, height, keypoints_2d)
|
1021 |
+
elif p < 0.8:
|
1022 |
+
center_x, center_y, width, height = crop_legs_only(center_x, center_y, width, height, keypoints_2d)
|
1023 |
+
elif p < 0.9:
|
1024 |
+
center_x, center_y, width, height = crop_rightleg_only(center_x, center_y, width, height, keypoints_2d)
|
1025 |
+
else:
|
1026 |
+
center_x, center_y, width, height = crop_leftleg_only(center_x, center_y, width, height, keypoints_2d)
|
1027 |
+
elif upper_body(keypoints_2d):
|
1028 |
+
if p < 0.2:
|
1029 |
+
center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d)
|
1030 |
+
elif p < 0.4:
|
1031 |
+
center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d)
|
1032 |
+
elif p < 0.6:
|
1033 |
+
center_x, center_y, width, height = crop_torso_only(center_x, center_y, width, height, keypoints_2d)
|
1034 |
+
elif p < 0.8:
|
1035 |
+
center_x, center_y, width, height = crop_rightarm_only(center_x, center_y, width, height, keypoints_2d)
|
1036 |
+
else:
|
1037 |
+
center_x, center_y, width, height = crop_leftarm_only(center_x, center_y, width, height, keypoints_2d)
|
1038 |
+
return center_x, center_y, max(width, height), max(width, height)
|
amr/datasets/vitdet_dataset.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from skimage.filters import gaussian
|
6 |
+
from yacs.config import CfgNode
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from .utils import (convert_cvimg_to_tensor,
|
10 |
+
expand_to_aspect_ratio,
|
11 |
+
generate_image_patch_cv2)
|
12 |
+
|
13 |
+
DEFAULT_MEAN = 255. * np.array([0.485, 0.456, 0.406])
|
14 |
+
DEFAULT_STD = 255. * np.array([0.229, 0.224, 0.225])
|
15 |
+
|
16 |
+
|
17 |
+
class ViTDetDataset(torch.utils.data.Dataset):
|
18 |
+
|
19 |
+
def __init__(self,
|
20 |
+
cfg: CfgNode,
|
21 |
+
img_cv2: np.array,
|
22 |
+
boxes: np.array,
|
23 |
+
rescale_factor=1,
|
24 |
+
train: bool = False,
|
25 |
+
**kwargs):
|
26 |
+
super().__init__()
|
27 |
+
self.cfg = cfg
|
28 |
+
self.img_cv2 = img_cv2
|
29 |
+
self.boxes = boxes
|
30 |
+
|
31 |
+
assert train is False, "ViTDetDataset is only for inference"
|
32 |
+
self.train = train
|
33 |
+
self.img_size = cfg.MODEL.IMAGE_SIZE
|
34 |
+
self.mean = 255. * np.array(self.cfg.MODEL.IMAGE_MEAN)
|
35 |
+
self.std = 255. * np.array(self.cfg.MODEL.IMAGE_STD)
|
36 |
+
|
37 |
+
# Preprocess annotations
|
38 |
+
boxes = boxes.astype(np.float32)
|
39 |
+
self.center = (boxes[:, 2:4] + boxes[:, 0:2]) / 2.0
|
40 |
+
self.scale = rescale_factor * (boxes[:, 2:4] - boxes[:, 0:2]) / 200.0
|
41 |
+
self.personid = np.arange(len(boxes), dtype=np.int32)
|
42 |
+
|
43 |
+
def __len__(self) -> int:
|
44 |
+
return len(self.personid)
|
45 |
+
|
46 |
+
def __getitem__(self, idx: int) -> Dict[str, np.array]:
|
47 |
+
|
48 |
+
center = self.center[idx].copy()
|
49 |
+
center_x = center[0]
|
50 |
+
center_y = center[1]
|
51 |
+
|
52 |
+
scale = self.scale[idx]
|
53 |
+
BBOX_SHAPE = self.cfg.MODEL.get('BBOX_SHAPE', None)
|
54 |
+
bbox_size = expand_to_aspect_ratio(scale * 200, target_aspect_ratio=BBOX_SHAPE).max()
|
55 |
+
|
56 |
+
patch_width = patch_height = self.img_size
|
57 |
+
|
58 |
+
flip = False
|
59 |
+
|
60 |
+
# 3. generate image patch
|
61 |
+
# if use_skimage_antialias:
|
62 |
+
cvimg = self.img_cv2.copy()
|
63 |
+
if True:
|
64 |
+
# Blur image to avoid aliasing artifacts
|
65 |
+
downsampling_factor = ((bbox_size * 1.0) / patch_width)
|
66 |
+
print(f'{downsampling_factor=}')
|
67 |
+
downsampling_factor = downsampling_factor / 2.0
|
68 |
+
if downsampling_factor > 1.1:
|
69 |
+
cvimg = gaussian(cvimg, sigma=(downsampling_factor - 1) / 2, channel_axis=2, preserve_range=True)
|
70 |
+
|
71 |
+
img_patch_cv, trans = generate_image_patch_cv2(cvimg,
|
72 |
+
center_x, center_y,
|
73 |
+
bbox_size, bbox_size,
|
74 |
+
patch_width, patch_height,
|
75 |
+
flip, 1.0, 0.0,
|
76 |
+
border_mode=cv2.BORDER_CONSTANT)
|
77 |
+
img_patch_cv = img_patch_cv[:, :, ::-1]
|
78 |
+
img_patch = convert_cvimg_to_tensor(img_patch_cv)
|
79 |
+
|
80 |
+
# apply normalization
|
81 |
+
for n_c in range(min(self.img_cv2.shape[2], 3)):
|
82 |
+
img_patch[n_c, :, :] = (img_patch[n_c, :, :] - self.mean[n_c]) / self.std[n_c]
|
83 |
+
|
84 |
+
item = {
|
85 |
+
'img': img_patch / 255.,
|
86 |
+
'personid': int(self.personid[idx]),
|
87 |
+
'box_center': self.center[idx].copy(),
|
88 |
+
'box_size': bbox_size,
|
89 |
+
'img_size': 1.0 * np.array([cvimg.shape[1], cvimg.shape[0]]),
|
90 |
+
'focal_length': np.array([self.cfg.EXTRA.FOCAL_LENGTH, self.cfg.EXTRA.FOCAL_LENGTH]),
|
91 |
+
}
|
92 |
+
return item
|
amr/models/__init__.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .smal_warapper import SMAL
|
2 |
+
from ..configs import CACHE_DIR_HAMER
|
3 |
+
from .amr import AMR
|
4 |
+
|
5 |
+
DEFAULT_CHECKPOINT = f'{CACHE_DIR_HAMER}/train/runs/AniMer/checkpoints/checkpoint.ckpt'
|
6 |
+
|
7 |
+
|
8 |
+
def load_amr(checkpoint_path=DEFAULT_CHECKPOINT):
|
9 |
+
from pathlib import Path
|
10 |
+
from ..configs import get_config
|
11 |
+
model_cfg = str(Path(checkpoint_path).parent.parent / '.hydra/config.yaml')
|
12 |
+
model_cfg = get_config(model_cfg, update_cachedir=True)
|
13 |
+
|
14 |
+
# Override some config values, to crop bbox correctly
|
15 |
+
if (model_cfg.MODEL.BACKBONE.TYPE == 'vit') and ('BBOX_SHAPE' not in model_cfg.MODEL):
|
16 |
+
model_cfg.defrost()
|
17 |
+
assert model_cfg.MODEL.IMAGE_SIZE == 256, f"MODEL.IMAGE_SIZE ({model_cfg.MODEL.IMAGE_SIZE}) should be 256 for ViT backbone"
|
18 |
+
model_cfg.MODEL.BBOX_SHAPE = [192, 256]
|
19 |
+
model_cfg.freeze()
|
20 |
+
|
21 |
+
# Update config to be compatible with demo
|
22 |
+
if ('PRETRAINED_WEIGHTS' in model_cfg.MODEL.BACKBONE):
|
23 |
+
model_cfg.defrost()
|
24 |
+
model_cfg.MODEL.BACKBONE.pop('PRETRAINED_WEIGHTS')
|
25 |
+
model_cfg.freeze()
|
26 |
+
|
27 |
+
model = AMR.load_from_checkpoint(checkpoint_path, strict=False, cfg=model_cfg)
|
28 |
+
return model, model_cfg
|
amr/models/amr.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import pickle
|
3 |
+
import pytorch_lightning as pl
|
4 |
+
from typing import Any, Dict
|
5 |
+
from yacs.config import CfgNode
|
6 |
+
from ..utils.geometry import aa_to_rotmat, perspective_projection
|
7 |
+
from ..utils.pylogger import get_pylogger
|
8 |
+
from .backbones import create_backbone
|
9 |
+
from .heads import build_smal_head
|
10 |
+
from . import SMAL
|
11 |
+
|
12 |
+
log = get_pylogger(__name__)
|
13 |
+
|
14 |
+
|
15 |
+
class AMR(pl.LightningModule):
|
16 |
+
|
17 |
+
def __init__(self, cfg: CfgNode, init_renderer: bool = True):
|
18 |
+
"""
|
19 |
+
Setup AMR model
|
20 |
+
Args:
|
21 |
+
cfg (CfgNode): Config file as a yacs CfgNode
|
22 |
+
"""
|
23 |
+
super().__init__()
|
24 |
+
|
25 |
+
# Save hyperparameters
|
26 |
+
self.save_hyperparameters(logger=False, ignore=['init_renderer'])
|
27 |
+
|
28 |
+
self.cfg = cfg
|
29 |
+
# Create backbone feature extractor
|
30 |
+
self.backbone = create_backbone(cfg)
|
31 |
+
|
32 |
+
# Create SMAL head
|
33 |
+
self.smal_head = build_smal_head(cfg)
|
34 |
+
|
35 |
+
# Instantiate SMAL model
|
36 |
+
smal_model_path = cfg.SMAL.MODEL_PATH
|
37 |
+
with open(smal_model_path, 'rb') as f:
|
38 |
+
smal_cfg = pickle.load(f, encoding="latin1")
|
39 |
+
self.smal = SMAL(**smal_cfg)
|
40 |
+
|
41 |
+
def forward_step(self, batch: Dict) -> Dict:
|
42 |
+
"""
|
43 |
+
Run a forward step of the network
|
44 |
+
Args:
|
45 |
+
batch (Dict): Dictionary containing batch data
|
46 |
+
Returns:
|
47 |
+
Dict: Dictionary containing the regression output
|
48 |
+
"""
|
49 |
+
|
50 |
+
# Use RGB image as input
|
51 |
+
x = batch['img']
|
52 |
+
batch_size = x.shape[0]
|
53 |
+
|
54 |
+
# Compute conditioning features using the backbone
|
55 |
+
conditioning_feats, cls = self.backbone(x[:, :, :, 32:-32]) # [256, 192]
|
56 |
+
# conditioning_feats = self.backbone.forward_features(x)['x_norm_patchtokens']
|
57 |
+
# pred_mano_params:{'betas':[batch_size, 10], 'global_orient': [batch_size, 1, 3, 3],
|
58 |
+
# 'pose':[batch_size, 33, 3, 3], 'translation': [batch_size, 3]}
|
59 |
+
# pred_cam:[batch_size, 3]
|
60 |
+
pred_smal_params, pred_cam, _ = self.smal_head(conditioning_feats)
|
61 |
+
|
62 |
+
# Store useful regression outputs to the output dict
|
63 |
+
output = {}
|
64 |
+
|
65 |
+
output['pred_cam'] = pred_cam
|
66 |
+
output['pred_smal_params'] = {k: v.clone() for k, v in pred_smal_params.items()}
|
67 |
+
|
68 |
+
# Compute camera translation
|
69 |
+
focal_length = batch['focal_length']
|
70 |
+
pred_cam_t = torch.stack([pred_cam[:, 1],
|
71 |
+
pred_cam[:, 2],
|
72 |
+
2 * focal_length[:, 0] / (self.cfg.MODEL.IMAGE_SIZE * pred_cam[:, 0] + 1e-9)], dim=-1)
|
73 |
+
output['pred_cam_t'] = pred_cam_t
|
74 |
+
output['focal_length'] = focal_length
|
75 |
+
|
76 |
+
# Compute model vertices, joints and the projected joints
|
77 |
+
pred_smal_params['global_orient'] = pred_smal_params['global_orient'].reshape(batch_size, -1, 3, 3)
|
78 |
+
pred_smal_params['pose'] = pred_smal_params['pose'].reshape(batch_size, -1, 3, 3)
|
79 |
+
pred_smal_params['betas'] = pred_smal_params['betas'].reshape(batch_size, -1)
|
80 |
+
smal_output = self.smal(**pred_smal_params, pose2rot=False)
|
81 |
+
|
82 |
+
pred_keypoints_3d = smal_output.joints
|
83 |
+
pred_vertices = smal_output.vertices
|
84 |
+
output['pred_keypoints_3d'] = pred_keypoints_3d.reshape(batch_size, -1, 3)
|
85 |
+
output['pred_vertices'] = pred_vertices.reshape(batch_size, -1, 3)
|
86 |
+
pred_cam_t = pred_cam_t.reshape(-1, 3)
|
87 |
+
focal_length = focal_length.reshape(-1, 2)
|
88 |
+
pred_keypoints_2d = perspective_projection(pred_keypoints_3d,
|
89 |
+
translation=pred_cam_t,
|
90 |
+
focal_length=focal_length / self.cfg.MODEL.IMAGE_SIZE)
|
91 |
+
|
92 |
+
output['pred_keypoints_2d'] = pred_keypoints_2d.reshape(batch_size, -1, 2)
|
93 |
+
return output
|
94 |
+
|
95 |
+
def forward(self, batch: Dict) -> Dict:
|
96 |
+
"""
|
97 |
+
Run a forward step of the network in val mode
|
98 |
+
Args:
|
99 |
+
batch (Dict): Dictionary containing batch data
|
100 |
+
Returns:
|
101 |
+
Dict: Dictionary containing the regression output
|
102 |
+
"""
|
103 |
+
return self.forward_step(batch)
|
104 |
+
|
amr/models/backbones/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .vit import vit, vitl
|
2 |
+
|
3 |
+
def create_backbone(cfg):
|
4 |
+
if cfg.MODEL.BACKBONE.TYPE == 'vit':
|
5 |
+
return vit(cfg)
|
6 |
+
else:
|
7 |
+
raise NotImplementedError('Backbone type is not implemented')
|
amr/models/backbones/vit.py
ADDED
@@ -0,0 +1,384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import math
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from functools import partial
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import torch.utils.checkpoint as checkpoint
|
9 |
+
from timm.layers import drop_path, to_2tuple, trunc_normal_
|
10 |
+
|
11 |
+
|
12 |
+
def vit(cfg):
|
13 |
+
return ViT(
|
14 |
+
img_size=(256, 192),
|
15 |
+
patch_size=16,
|
16 |
+
embed_dim=1280,
|
17 |
+
depth=32,
|
18 |
+
num_heads=16,
|
19 |
+
ratio=1,
|
20 |
+
use_checkpoint=False,
|
21 |
+
mlp_ratio=4,
|
22 |
+
qkv_bias=True,
|
23 |
+
drop_path_rate=0.55,
|
24 |
+
use_cls=cfg.MODEL.get("USE_CLS", False),
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
def vitl(cfg):
|
29 |
+
return ViT(
|
30 |
+
img_size=(256, 192),
|
31 |
+
patch_size=16,
|
32 |
+
embed_dim=1024,
|
33 |
+
depth=24,
|
34 |
+
num_heads=16,
|
35 |
+
ratio=1,
|
36 |
+
use_checkpoint=False,
|
37 |
+
mlp_ratio=4,
|
38 |
+
qkv_bias=True,
|
39 |
+
drop_path_rate=0.5,
|
40 |
+
use_cls=cfg.MODEL.get("USE_CLS", False),
|
41 |
+
)
|
42 |
+
|
43 |
+
|
44 |
+
def get_abs_pos(abs_pos, h, w, ori_h, ori_w, has_cls_token=True):
|
45 |
+
"""
|
46 |
+
Calculate absolute positional embeddings. If needed, resize embeddings and remove cls_token
|
47 |
+
dimension for the original embeddings.
|
48 |
+
Args:
|
49 |
+
abs_pos (Tensor): absolute positional embeddings with (1, num_position, C).
|
50 |
+
has_cls_token (bool): If true, has 1 embedding in abs_pos for cls token.
|
51 |
+
hw (Tuple): size of input image tokens.
|
52 |
+
|
53 |
+
Returns:
|
54 |
+
Absolute positional embeddings after processing with shape (1, H, W, C)
|
55 |
+
"""
|
56 |
+
cls_token = None
|
57 |
+
B, L, C = abs_pos.shape
|
58 |
+
if has_cls_token:
|
59 |
+
cls_token = abs_pos[:, 0:1]
|
60 |
+
abs_pos = abs_pos[:, 1:]
|
61 |
+
|
62 |
+
if ori_h != h or ori_w != w:
|
63 |
+
new_abs_pos = F.interpolate(
|
64 |
+
abs_pos.reshape(1, ori_h, ori_w, -1).permute(0, 3, 1, 2),
|
65 |
+
size=(h, w),
|
66 |
+
mode="bicubic",
|
67 |
+
align_corners=False,
|
68 |
+
).permute(0, 2, 3, 1).reshape(B, -1, C)
|
69 |
+
|
70 |
+
else:
|
71 |
+
new_abs_pos = abs_pos
|
72 |
+
|
73 |
+
if cls_token is not None:
|
74 |
+
new_abs_pos = torch.cat([cls_token, new_abs_pos], dim=1)
|
75 |
+
return new_abs_pos
|
76 |
+
|
77 |
+
|
78 |
+
class DropPath(nn.Module):
|
79 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
80 |
+
"""
|
81 |
+
|
82 |
+
def __init__(self, drop_prob=None):
|
83 |
+
super(DropPath, self).__init__()
|
84 |
+
self.drop_prob = drop_prob
|
85 |
+
|
86 |
+
def forward(self, x):
|
87 |
+
return drop_path(x, self.drop_prob, self.training)
|
88 |
+
|
89 |
+
def extra_repr(self):
|
90 |
+
return 'p={}'.format(self.drop_prob)
|
91 |
+
|
92 |
+
|
93 |
+
class Mlp(nn.Module):
|
94 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
95 |
+
super().__init__()
|
96 |
+
out_features = out_features or in_features
|
97 |
+
hidden_features = hidden_features or in_features
|
98 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
99 |
+
self.act = act_layer()
|
100 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
101 |
+
self.drop = nn.Dropout(drop)
|
102 |
+
|
103 |
+
def forward(self, x):
|
104 |
+
x = self.fc1(x)
|
105 |
+
x = self.act(x)
|
106 |
+
x = self.fc2(x)
|
107 |
+
x = self.drop(x)
|
108 |
+
return x
|
109 |
+
|
110 |
+
|
111 |
+
class Attention(nn.Module):
|
112 |
+
def __init__(
|
113 |
+
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
|
114 |
+
proj_drop=0., attn_head_dim=None):
|
115 |
+
super().__init__()
|
116 |
+
self.num_heads = num_heads
|
117 |
+
head_dim = dim // num_heads
|
118 |
+
self.dim = dim
|
119 |
+
|
120 |
+
if attn_head_dim is not None:
|
121 |
+
head_dim = attn_head_dim
|
122 |
+
all_head_dim = head_dim * self.num_heads
|
123 |
+
|
124 |
+
self.scale = qk_scale or head_dim ** -0.5
|
125 |
+
|
126 |
+
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=qkv_bias)
|
127 |
+
|
128 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
129 |
+
self.proj = nn.Linear(all_head_dim, dim)
|
130 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
131 |
+
|
132 |
+
def forward(self, x):
|
133 |
+
B, N, C = x.shape
|
134 |
+
qkv = self.qkv(x)
|
135 |
+
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
136 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
137 |
+
|
138 |
+
q = q * self.scale
|
139 |
+
attn = (q @ k.transpose(-2, -1))
|
140 |
+
attn = attn.softmax(dim=-1)
|
141 |
+
attn = self.attn_drop(attn)
|
142 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
143 |
+
|
144 |
+
x = self.proj(x)
|
145 |
+
x = self.proj_drop(x)
|
146 |
+
|
147 |
+
return x
|
148 |
+
|
149 |
+
|
150 |
+
class Block(nn.Module):
|
151 |
+
|
152 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None,
|
153 |
+
drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU,
|
154 |
+
norm_layer=nn.LayerNorm, attn_head_dim=None,
|
155 |
+
):
|
156 |
+
super().__init__()
|
157 |
+
|
158 |
+
self.norm1 = norm_layer(dim)
|
159 |
+
self.attn = Attention(
|
160 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
161 |
+
attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim
|
162 |
+
)
|
163 |
+
|
164 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
165 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
166 |
+
self.norm2 = norm_layer(dim)
|
167 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
168 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
169 |
+
|
170 |
+
def forward(self, x):
|
171 |
+
x = x + self.drop_path(self.attn(self.norm1(x)))
|
172 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
173 |
+
return x
|
174 |
+
|
175 |
+
|
176 |
+
class PatchEmbed(nn.Module):
|
177 |
+
""" Image to Patch Embedding
|
178 |
+
"""
|
179 |
+
|
180 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, ratio=1):
|
181 |
+
super().__init__()
|
182 |
+
img_size = to_2tuple(img_size)
|
183 |
+
patch_size = to_2tuple(patch_size)
|
184 |
+
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) * (ratio ** 2)
|
185 |
+
self.patch_shape = (int(img_size[0] // patch_size[0] * ratio), int(img_size[1] // patch_size[1] * ratio))
|
186 |
+
self.origin_patch_shape = (int(img_size[0] // patch_size[0]), int(img_size[1] // patch_size[1]))
|
187 |
+
self.img_size = img_size
|
188 |
+
self.patch_size = patch_size
|
189 |
+
self.num_patches = num_patches
|
190 |
+
|
191 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=(patch_size[0] // ratio),
|
192 |
+
padding=4 + 2 * (ratio // 2 - 1))
|
193 |
+
|
194 |
+
def forward(self, x, **kwargs):
|
195 |
+
B, C, H, W = x.shape
|
196 |
+
x = self.proj(x)
|
197 |
+
Hp, Wp = x.shape[2], x.shape[3]
|
198 |
+
|
199 |
+
x = x.flatten(2).transpose(1, 2)
|
200 |
+
return x, (Hp, Wp)
|
201 |
+
|
202 |
+
|
203 |
+
class HybridEmbed(nn.Module):
|
204 |
+
""" CNN Feature Map Embedding
|
205 |
+
Extract feature map from CNN, flatten, project to embedding dim.
|
206 |
+
"""
|
207 |
+
|
208 |
+
def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768):
|
209 |
+
super().__init__()
|
210 |
+
assert isinstance(backbone, nn.Module)
|
211 |
+
img_size = to_2tuple(img_size)
|
212 |
+
self.img_size = img_size
|
213 |
+
self.backbone = backbone
|
214 |
+
if feature_size is None:
|
215 |
+
with torch.no_grad():
|
216 |
+
training = backbone.training
|
217 |
+
if training:
|
218 |
+
backbone.eval()
|
219 |
+
o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1]
|
220 |
+
feature_size = o.shape[-2:]
|
221 |
+
feature_dim = o.shape[1]
|
222 |
+
backbone.train(training)
|
223 |
+
else:
|
224 |
+
feature_size = to_2tuple(feature_size)
|
225 |
+
feature_dim = self.backbone.feature_info.channels()[-1]
|
226 |
+
self.num_patches = feature_size[0] * feature_size[1]
|
227 |
+
self.proj = nn.Linear(feature_dim, embed_dim)
|
228 |
+
|
229 |
+
def forward(self, x):
|
230 |
+
x = self.backbone(x)[-1]
|
231 |
+
x = x.flatten(2).transpose(1, 2)
|
232 |
+
x = self.proj(x)
|
233 |
+
return x
|
234 |
+
|
235 |
+
|
236 |
+
class ViT(nn.Module):
|
237 |
+
|
238 |
+
def __init__(self,
|
239 |
+
img_size=224, patch_size=16, in_chans=3, num_classes=80, embed_dim=768, depth=12,
|
240 |
+
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
|
241 |
+
drop_path_rate=0., hybrid_backbone=None, norm_layer=None, use_checkpoint=False,
|
242 |
+
frozen_stages=-1, ratio=1, last_norm=True, use_cls=False,
|
243 |
+
patch_padding='pad', freeze_attn=False, freeze_ffn=False,
|
244 |
+
):
|
245 |
+
# Protect mutable default arguments
|
246 |
+
super(ViT, self).__init__()
|
247 |
+
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
248 |
+
self.num_classes = num_classes
|
249 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
250 |
+
self.frozen_stages = frozen_stages
|
251 |
+
self.use_checkpoint = use_checkpoint
|
252 |
+
self.patch_padding = patch_padding
|
253 |
+
self.freeze_attn = freeze_attn
|
254 |
+
self.freeze_ffn = freeze_ffn
|
255 |
+
self.depth = depth
|
256 |
+
|
257 |
+
if hybrid_backbone is not None:
|
258 |
+
self.patch_embed = HybridEmbed(
|
259 |
+
hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim)
|
260 |
+
else:
|
261 |
+
self.patch_embed = PatchEmbed(
|
262 |
+
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, ratio=ratio)
|
263 |
+
num_patches = self.patch_embed.num_patches
|
264 |
+
|
265 |
+
# since the pretraining model has class token
|
266 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
267 |
+
|
268 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
269 |
+
|
270 |
+
self.blocks = nn.ModuleList([
|
271 |
+
Block(
|
272 |
+
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
273 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
274 |
+
)
|
275 |
+
for i in range(depth)])
|
276 |
+
|
277 |
+
self.last_norm = norm_layer(embed_dim) if last_norm else nn.Identity()
|
278 |
+
|
279 |
+
if self.pos_embed is not None:
|
280 |
+
trunc_normal_(self.pos_embed, std=.02)
|
281 |
+
|
282 |
+
self.use_cls = use_cls
|
283 |
+
if use_cls:
|
284 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
285 |
+
nn.init.normal_(self.cls_token, std=1e-6)
|
286 |
+
else:
|
287 |
+
self.cls_token = None
|
288 |
+
|
289 |
+
self._freeze_stages()
|
290 |
+
|
291 |
+
def _freeze_stages(self):
|
292 |
+
"""Freeze parameters."""
|
293 |
+
if self.frozen_stages >= 0:
|
294 |
+
self.patch_embed.eval()
|
295 |
+
for param in self.patch_embed.parameters():
|
296 |
+
param.requires_grad = False
|
297 |
+
|
298 |
+
for i in range(1, self.frozen_stages + 1):
|
299 |
+
m = self.blocks[i]
|
300 |
+
m.eval()
|
301 |
+
for param in m.parameters():
|
302 |
+
param.requires_grad = False
|
303 |
+
|
304 |
+
if self.freeze_attn:
|
305 |
+
for i in range(0, self.depth):
|
306 |
+
m = self.blocks[i]
|
307 |
+
m.attn.eval()
|
308 |
+
m.norm1.eval()
|
309 |
+
for param in m.attn.parameters():
|
310 |
+
param.requires_grad = False
|
311 |
+
for param in m.norm1.parameters():
|
312 |
+
param.requires_grad = False
|
313 |
+
|
314 |
+
if self.freeze_ffn:
|
315 |
+
self.pos_embed.requires_grad = False
|
316 |
+
self.patch_embed.eval()
|
317 |
+
for param in self.patch_embed.parameters():
|
318 |
+
param.requires_grad = False
|
319 |
+
for i in range(0, self.depth):
|
320 |
+
m = self.blocks[i]
|
321 |
+
m.mlp.eval()
|
322 |
+
m.norm2.eval()
|
323 |
+
for param in m.mlp.parameters():
|
324 |
+
param.requires_grad = False
|
325 |
+
for param in m.norm2.parameters():
|
326 |
+
param.requires_grad = False
|
327 |
+
|
328 |
+
def init_weights(self):
|
329 |
+
"""Initialize the weights in backbone.
|
330 |
+
Args:
|
331 |
+
pretrained (str, optional): Path to pre-trained weights.
|
332 |
+
Defaults to None.
|
333 |
+
"""
|
334 |
+
|
335 |
+
def _init_weights(m):
|
336 |
+
if isinstance(m, nn.Linear):
|
337 |
+
trunc_normal_(m.weight, std=.02)
|
338 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
339 |
+
nn.init.constant_(m.bias, 0)
|
340 |
+
elif isinstance(m, nn.LayerNorm):
|
341 |
+
nn.init.constant_(m.bias, 0)
|
342 |
+
nn.init.constant_(m.weight, 1.0)
|
343 |
+
|
344 |
+
self.apply(_init_weights)
|
345 |
+
|
346 |
+
def get_num_layers(self):
|
347 |
+
return len(self.blocks)
|
348 |
+
|
349 |
+
@torch.jit.ignore
|
350 |
+
def no_weight_decay(self):
|
351 |
+
return {'pos_embed', 'cls_token'}
|
352 |
+
|
353 |
+
def forward_features(self, x):
|
354 |
+
B, C, H, W = x.shape
|
355 |
+
x, (Hp, Wp) = self.patch_embed(x)
|
356 |
+
|
357 |
+
if self.pos_embed is not None:
|
358 |
+
# fit for multiple GPU training
|
359 |
+
# since the first element for pos embed (sin-cos manner) is zero, it will cause no difference
|
360 |
+
x = x + self.pos_embed[:, 1:] + self.pos_embed[:, :1]
|
361 |
+
|
362 |
+
x = torch.cat((self.cls_token.expand(B, -1, -1), x), dim=1) if self.use_cls else x
|
363 |
+
for blk in self.blocks:
|
364 |
+
if self.use_checkpoint:
|
365 |
+
x = checkpoint.checkpoint(blk, x)
|
366 |
+
else:
|
367 |
+
x = blk(x)
|
368 |
+
|
369 |
+
x = self.last_norm(x)
|
370 |
+
|
371 |
+
cls = x[:, 0] if self.use_cls else None
|
372 |
+
x = x[:, 1:] if self.use_cls else x
|
373 |
+
xp = x.permute(0, 2, 1).reshape(B, -1, Hp, Wp).contiguous()
|
374 |
+
|
375 |
+
return xp, cls
|
376 |
+
|
377 |
+
def forward(self, x):
|
378 |
+
x, cls = self.forward_features(x)
|
379 |
+
return x, cls
|
380 |
+
|
381 |
+
def train(self, mode=True):
|
382 |
+
"""Convert the model into training mode."""
|
383 |
+
super().train(mode)
|
384 |
+
self._freeze_stages()
|
amr/models/components/__init__.py
ADDED
File without changes
|
amr/models/components/pose_transformer.py
ADDED
@@ -0,0 +1,358 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from inspect import isfunction
|
2 |
+
from typing import Callable, Optional
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from einops import rearrange
|
6 |
+
from einops.layers.torch import Rearrange
|
7 |
+
from torch import nn
|
8 |
+
|
9 |
+
from .t_cond_mlp import (
|
10 |
+
AdaptiveLayerNorm1D,
|
11 |
+
FrequencyEmbedder,
|
12 |
+
normalization_layer,
|
13 |
+
)
|
14 |
+
# from .vit import Attention, FeedForward
|
15 |
+
|
16 |
+
|
17 |
+
def exists(val):
|
18 |
+
return val is not None
|
19 |
+
|
20 |
+
|
21 |
+
def default(val, d):
|
22 |
+
if exists(val):
|
23 |
+
return val
|
24 |
+
return d() if isfunction(d) else d
|
25 |
+
|
26 |
+
|
27 |
+
class PreNorm(nn.Module):
|
28 |
+
def __init__(self, dim: int, fn: Callable, norm: str = "layer", norm_cond_dim: int = -1):
|
29 |
+
super().__init__()
|
30 |
+
self.norm = normalization_layer(norm, dim, norm_cond_dim)
|
31 |
+
self.fn = fn
|
32 |
+
|
33 |
+
def forward(self, x: torch.Tensor, *args, **kwargs):
|
34 |
+
if isinstance(self.norm, AdaptiveLayerNorm1D):
|
35 |
+
return self.fn(self.norm(x, *args), **kwargs)
|
36 |
+
else:
|
37 |
+
return self.fn(self.norm(x), **kwargs)
|
38 |
+
|
39 |
+
|
40 |
+
class FeedForward(nn.Module):
|
41 |
+
def __init__(self, dim, hidden_dim, dropout=0.0):
|
42 |
+
super().__init__()
|
43 |
+
self.net = nn.Sequential(
|
44 |
+
nn.Linear(dim, hidden_dim),
|
45 |
+
nn.GELU(),
|
46 |
+
nn.Dropout(dropout),
|
47 |
+
nn.Linear(hidden_dim, dim),
|
48 |
+
nn.Dropout(dropout),
|
49 |
+
)
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
return self.net(x)
|
53 |
+
|
54 |
+
|
55 |
+
class Attention(nn.Module):
|
56 |
+
def __init__(self, dim, heads=8, dim_head=64, dropout=0.0):
|
57 |
+
super().__init__()
|
58 |
+
inner_dim = dim_head * heads
|
59 |
+
project_out = not (heads == 1 and dim_head == dim)
|
60 |
+
|
61 |
+
self.heads = heads
|
62 |
+
self.scale = dim_head**-0.5
|
63 |
+
|
64 |
+
self.attend = nn.Softmax(dim=-1)
|
65 |
+
self.dropout = nn.Dropout(dropout)
|
66 |
+
|
67 |
+
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)
|
68 |
+
|
69 |
+
self.to_out = (
|
70 |
+
nn.Sequential(nn.Linear(inner_dim, dim), nn.Dropout(dropout))
|
71 |
+
if project_out
|
72 |
+
else nn.Identity()
|
73 |
+
)
|
74 |
+
|
75 |
+
def forward(self, x):
|
76 |
+
qkv = self.to_qkv(x).chunk(3, dim=-1)
|
77 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.heads), qkv)
|
78 |
+
|
79 |
+
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
80 |
+
|
81 |
+
attn = self.attend(dots)
|
82 |
+
attn = self.dropout(attn)
|
83 |
+
|
84 |
+
out = torch.matmul(attn, v)
|
85 |
+
out = rearrange(out, "b h n d -> b n (h d)")
|
86 |
+
return self.to_out(out)
|
87 |
+
|
88 |
+
|
89 |
+
class CrossAttention(nn.Module):
|
90 |
+
def __init__(self, dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
|
91 |
+
super().__init__()
|
92 |
+
inner_dim = dim_head * heads
|
93 |
+
project_out = not (heads == 1 and dim_head == dim)
|
94 |
+
|
95 |
+
self.heads = heads
|
96 |
+
self.scale = dim_head**-0.5
|
97 |
+
|
98 |
+
self.attend = nn.Softmax(dim=-1)
|
99 |
+
self.dropout = nn.Dropout(dropout)
|
100 |
+
|
101 |
+
context_dim = default(context_dim, dim)
|
102 |
+
self.to_kv = nn.Linear(context_dim, inner_dim * 2, bias=False)
|
103 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
104 |
+
|
105 |
+
self.to_out = (
|
106 |
+
nn.Sequential(nn.Linear(inner_dim, dim), nn.Dropout(dropout))
|
107 |
+
if project_out
|
108 |
+
else nn.Identity()
|
109 |
+
)
|
110 |
+
|
111 |
+
def forward(self, x, context=None):
|
112 |
+
context = default(context, x)
|
113 |
+
k, v = self.to_kv(context).chunk(2, dim=-1)
|
114 |
+
q = self.to_q(x)
|
115 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.heads), [q, k, v])
|
116 |
+
|
117 |
+
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
118 |
+
|
119 |
+
attn = self.attend(dots)
|
120 |
+
attn = self.dropout(attn)
|
121 |
+
|
122 |
+
out = torch.matmul(attn, v)
|
123 |
+
out = rearrange(out, "b h n d -> b n (h d)")
|
124 |
+
return self.to_out(out)
|
125 |
+
|
126 |
+
|
127 |
+
class Transformer(nn.Module):
|
128 |
+
def __init__(
|
129 |
+
self,
|
130 |
+
dim: int,
|
131 |
+
depth: int,
|
132 |
+
heads: int,
|
133 |
+
dim_head: int,
|
134 |
+
mlp_dim: int,
|
135 |
+
dropout: float = 0.0,
|
136 |
+
norm: str = "layer",
|
137 |
+
norm_cond_dim: int = -1,
|
138 |
+
):
|
139 |
+
super().__init__()
|
140 |
+
self.layers = nn.ModuleList([])
|
141 |
+
for _ in range(depth):
|
142 |
+
sa = Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout)
|
143 |
+
ff = FeedForward(dim, mlp_dim, dropout=dropout)
|
144 |
+
self.layers.append(
|
145 |
+
nn.ModuleList(
|
146 |
+
[
|
147 |
+
PreNorm(dim, sa, norm=norm, norm_cond_dim=norm_cond_dim),
|
148 |
+
PreNorm(dim, ff, norm=norm, norm_cond_dim=norm_cond_dim),
|
149 |
+
]
|
150 |
+
)
|
151 |
+
)
|
152 |
+
|
153 |
+
def forward(self, x: torch.Tensor, *args):
|
154 |
+
for attn, ff in self.layers:
|
155 |
+
x = attn(x, *args) + x
|
156 |
+
x = ff(x, *args) + x
|
157 |
+
return x
|
158 |
+
|
159 |
+
|
160 |
+
class TransformerCrossAttn(nn.Module):
|
161 |
+
def __init__(
|
162 |
+
self,
|
163 |
+
dim: int,
|
164 |
+
depth: int,
|
165 |
+
heads: int,
|
166 |
+
dim_head: int,
|
167 |
+
mlp_dim: int,
|
168 |
+
dropout: float = 0.0,
|
169 |
+
norm: str = "layer",
|
170 |
+
norm_cond_dim: int = -1,
|
171 |
+
context_dim: Optional[int] = None,
|
172 |
+
):
|
173 |
+
super().__init__()
|
174 |
+
self.layers = nn.ModuleList([])
|
175 |
+
for _ in range(depth):
|
176 |
+
sa = Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout)
|
177 |
+
ca = CrossAttention(
|
178 |
+
dim, context_dim=context_dim, heads=heads, dim_head=dim_head, dropout=dropout
|
179 |
+
)
|
180 |
+
ff = FeedForward(dim, mlp_dim, dropout=dropout)
|
181 |
+
self.layers.append(
|
182 |
+
nn.ModuleList(
|
183 |
+
[
|
184 |
+
PreNorm(dim, sa, norm=norm, norm_cond_dim=norm_cond_dim),
|
185 |
+
PreNorm(dim, ca, norm=norm, norm_cond_dim=norm_cond_dim),
|
186 |
+
PreNorm(dim, ff, norm=norm, norm_cond_dim=norm_cond_dim),
|
187 |
+
]
|
188 |
+
)
|
189 |
+
)
|
190 |
+
|
191 |
+
def forward(self, x: torch.Tensor, *args, context=None, context_list=None):
|
192 |
+
if context_list is None:
|
193 |
+
context_list = [context] * len(self.layers)
|
194 |
+
if len(context_list) != len(self.layers):
|
195 |
+
raise ValueError(f"len(context_list) != len(self.layers) ({len(context_list)} != {len(self.layers)})")
|
196 |
+
|
197 |
+
for i, (self_attn, cross_attn, ff) in enumerate(self.layers):
|
198 |
+
x = self_attn(x, *args) + x
|
199 |
+
x = cross_attn(x, *args, context=context_list[i]) + x
|
200 |
+
x = ff(x, *args) + x
|
201 |
+
return x
|
202 |
+
|
203 |
+
|
204 |
+
class DropTokenDropout(nn.Module):
|
205 |
+
def __init__(self, p: float = 0.1):
|
206 |
+
super().__init__()
|
207 |
+
if p < 0 or p > 1:
|
208 |
+
raise ValueError(
|
209 |
+
"dropout probability has to be between 0 and 1, " "but got {}".format(p)
|
210 |
+
)
|
211 |
+
self.p = p
|
212 |
+
|
213 |
+
def forward(self, x: torch.Tensor):
|
214 |
+
# x: (batch_size, seq_len, dim)
|
215 |
+
if self.training and self.p > 0:
|
216 |
+
zero_mask = torch.full_like(x[0, :, 0], self.p).bernoulli().bool()
|
217 |
+
# TODO: permutation idx for each batch using torch.argsort
|
218 |
+
if zero_mask.any():
|
219 |
+
x = x[:, ~zero_mask, :]
|
220 |
+
return x
|
221 |
+
|
222 |
+
|
223 |
+
class ZeroTokenDropout(nn.Module):
|
224 |
+
def __init__(self, p: float = 0.1):
|
225 |
+
super().__init__()
|
226 |
+
if p < 0 or p > 1:
|
227 |
+
raise ValueError(
|
228 |
+
"dropout probability has to be between 0 and 1, " "but got {}".format(p)
|
229 |
+
)
|
230 |
+
self.p = p
|
231 |
+
|
232 |
+
def forward(self, x: torch.Tensor):
|
233 |
+
# x: (batch_size, seq_len, dim)
|
234 |
+
if self.training and self.p > 0:
|
235 |
+
zero_mask = torch.full_like(x[:, :, 0], self.p).bernoulli().bool()
|
236 |
+
# Zero-out the masked tokens
|
237 |
+
x[zero_mask, :] = 0
|
238 |
+
return x
|
239 |
+
|
240 |
+
|
241 |
+
class TransformerEncoder(nn.Module):
|
242 |
+
def __init__(
|
243 |
+
self,
|
244 |
+
num_tokens: int,
|
245 |
+
token_dim: int,
|
246 |
+
dim: int,
|
247 |
+
depth: int,
|
248 |
+
heads: int,
|
249 |
+
mlp_dim: int,
|
250 |
+
dim_head: int = 64,
|
251 |
+
dropout: float = 0.0,
|
252 |
+
emb_dropout: float = 0.0,
|
253 |
+
emb_dropout_type: str = "drop",
|
254 |
+
emb_dropout_loc: str = "token",
|
255 |
+
norm: str = "layer",
|
256 |
+
norm_cond_dim: int = -1,
|
257 |
+
token_pe_numfreq: int = -1,
|
258 |
+
):
|
259 |
+
super().__init__()
|
260 |
+
if token_pe_numfreq > 0:
|
261 |
+
token_dim_new = token_dim * (2 * token_pe_numfreq + 1)
|
262 |
+
self.to_token_embedding = nn.Sequential(
|
263 |
+
Rearrange("b n d -> (b n) d", n=num_tokens, d=token_dim),
|
264 |
+
FrequencyEmbedder(token_pe_numfreq, token_pe_numfreq - 1),
|
265 |
+
Rearrange("(b n) d -> b n d", n=num_tokens, d=token_dim_new),
|
266 |
+
nn.Linear(token_dim_new, dim),
|
267 |
+
)
|
268 |
+
else:
|
269 |
+
self.to_token_embedding = nn.Linear(token_dim, dim)
|
270 |
+
self.pos_embedding = nn.Parameter(torch.randn(1, num_tokens, dim))
|
271 |
+
if emb_dropout_type == "drop":
|
272 |
+
self.dropout = DropTokenDropout(emb_dropout)
|
273 |
+
elif emb_dropout_type == "zero":
|
274 |
+
self.dropout = ZeroTokenDropout(emb_dropout)
|
275 |
+
else:
|
276 |
+
raise ValueError(f"Unknown emb_dropout_type: {emb_dropout_type}")
|
277 |
+
self.emb_dropout_loc = emb_dropout_loc
|
278 |
+
|
279 |
+
self.transformer = Transformer(
|
280 |
+
dim, depth, heads, dim_head, mlp_dim, dropout, norm=norm, norm_cond_dim=norm_cond_dim
|
281 |
+
)
|
282 |
+
|
283 |
+
def forward(self, inp: torch.Tensor, *args, **kwargs):
|
284 |
+
x = inp
|
285 |
+
|
286 |
+
if self.emb_dropout_loc == "input":
|
287 |
+
x = self.dropout(x)
|
288 |
+
x = self.to_token_embedding(x)
|
289 |
+
|
290 |
+
if self.emb_dropout_loc == "token":
|
291 |
+
x = self.dropout(x)
|
292 |
+
b, n, _ = x.shape
|
293 |
+
x += self.pos_embedding[:, :n]
|
294 |
+
|
295 |
+
if self.emb_dropout_loc == "token_afterpos":
|
296 |
+
x = self.dropout(x)
|
297 |
+
x = self.transformer(x, *args)
|
298 |
+
return x
|
299 |
+
|
300 |
+
|
301 |
+
class TransformerDecoder(nn.Module):
|
302 |
+
def __init__(
|
303 |
+
self,
|
304 |
+
num_tokens: int,
|
305 |
+
token_dim: int,
|
306 |
+
dim: int,
|
307 |
+
depth: int,
|
308 |
+
heads: int,
|
309 |
+
mlp_dim: int,
|
310 |
+
dim_head: int = 64,
|
311 |
+
dropout: float = 0.0,
|
312 |
+
emb_dropout: float = 0.0,
|
313 |
+
emb_dropout_type: str = 'drop',
|
314 |
+
norm: str = "layer",
|
315 |
+
norm_cond_dim: int = -1,
|
316 |
+
context_dim: Optional[int] = None,
|
317 |
+
skip_token_embedding: bool = False,
|
318 |
+
):
|
319 |
+
super().__init__()
|
320 |
+
if not skip_token_embedding:
|
321 |
+
self.to_token_embedding = nn.Linear(token_dim, dim)
|
322 |
+
else:
|
323 |
+
self.to_token_embedding = nn.Identity()
|
324 |
+
if token_dim != dim:
|
325 |
+
raise ValueError(
|
326 |
+
f"token_dim ({token_dim}) != dim ({dim}) when skip_token_embedding is True"
|
327 |
+
)
|
328 |
+
|
329 |
+
self.pos_embedding = nn.Parameter(torch.randn(1, num_tokens, dim))
|
330 |
+
if emb_dropout_type == "drop":
|
331 |
+
self.dropout = DropTokenDropout(emb_dropout)
|
332 |
+
elif emb_dropout_type == "zero":
|
333 |
+
self.dropout = ZeroTokenDropout(emb_dropout)
|
334 |
+
elif emb_dropout_type == "normal":
|
335 |
+
self.dropout = nn.Dropout(emb_dropout)
|
336 |
+
|
337 |
+
self.transformer = TransformerCrossAttn(
|
338 |
+
dim,
|
339 |
+
depth,
|
340 |
+
heads,
|
341 |
+
dim_head,
|
342 |
+
mlp_dim,
|
343 |
+
dropout,
|
344 |
+
norm=norm,
|
345 |
+
norm_cond_dim=norm_cond_dim,
|
346 |
+
context_dim=context_dim,
|
347 |
+
)
|
348 |
+
|
349 |
+
def forward(self, inp: torch.Tensor, *args, context=None, context_list=None):
|
350 |
+
x = self.to_token_embedding(inp)
|
351 |
+
b, n, _ = x.shape
|
352 |
+
|
353 |
+
x = self.dropout(x)
|
354 |
+
x += self.pos_embedding[:, :n]
|
355 |
+
|
356 |
+
x = self.transformer(x, *args, context=context, context_list=context_list)
|
357 |
+
return x
|
358 |
+
|
amr/models/components/t_cond_mlp.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
from typing import List, Optional
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
|
7 |
+
class AdaptiveLayerNorm1D(torch.nn.Module):
|
8 |
+
def __init__(self, data_dim: int, norm_cond_dim: int):
|
9 |
+
super().__init__()
|
10 |
+
if data_dim <= 0:
|
11 |
+
raise ValueError(f"data_dim must be positive, but got {data_dim}")
|
12 |
+
if norm_cond_dim <= 0:
|
13 |
+
raise ValueError(f"norm_cond_dim must be positive, but got {norm_cond_dim}")
|
14 |
+
self.norm = torch.nn.LayerNorm(
|
15 |
+
data_dim
|
16 |
+
) # TODO: Check if elementwise_affine=True is correct
|
17 |
+
self.linear = torch.nn.Linear(norm_cond_dim, 2 * data_dim)
|
18 |
+
torch.nn.init.zeros_(self.linear.weight)
|
19 |
+
torch.nn.init.zeros_(self.linear.bias)
|
20 |
+
|
21 |
+
def forward(self, x: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
|
22 |
+
# x: (batch, ..., data_dim)
|
23 |
+
# t: (batch, norm_cond_dim)
|
24 |
+
# return: (batch, data_dim)
|
25 |
+
x = self.norm(x)
|
26 |
+
alpha, beta = self.linear(t).chunk(2, dim=-1)
|
27 |
+
|
28 |
+
# Add singleton dimensions to alpha and beta
|
29 |
+
if x.dim() > 2:
|
30 |
+
alpha = alpha.view(alpha.shape[0], *([1] * (x.dim() - 2)), alpha.shape[1])
|
31 |
+
beta = beta.view(beta.shape[0], *([1] * (x.dim() - 2)), beta.shape[1])
|
32 |
+
|
33 |
+
return x * (1 + alpha) + beta
|
34 |
+
|
35 |
+
|
36 |
+
class SequentialCond(torch.nn.Sequential):
|
37 |
+
def forward(self, input, *args, **kwargs):
|
38 |
+
for module in self:
|
39 |
+
if isinstance(module, (AdaptiveLayerNorm1D, SequentialCond, ResidualMLPBlock)):
|
40 |
+
# print(f'Passing on args to {module}', [a.shape for a in args])
|
41 |
+
input = module(input, *args, **kwargs)
|
42 |
+
else:
|
43 |
+
# print(f'Skipping passing args to {module}', [a.shape for a in args])
|
44 |
+
input = module(input)
|
45 |
+
return input
|
46 |
+
|
47 |
+
|
48 |
+
def normalization_layer(norm: Optional[str], dim: int, norm_cond_dim: int = -1):
|
49 |
+
if norm == "batch":
|
50 |
+
return torch.nn.BatchNorm1d(dim)
|
51 |
+
elif norm == "layer":
|
52 |
+
return torch.nn.LayerNorm(dim)
|
53 |
+
elif norm == "ada":
|
54 |
+
assert norm_cond_dim > 0, f"norm_cond_dim must be positive, got {norm_cond_dim}"
|
55 |
+
return AdaptiveLayerNorm1D(dim, norm_cond_dim)
|
56 |
+
elif norm is None:
|
57 |
+
return torch.nn.Identity()
|
58 |
+
else:
|
59 |
+
raise ValueError(f"Unknown norm: {norm}")
|
60 |
+
|
61 |
+
|
62 |
+
def linear_norm_activ_dropout(
|
63 |
+
input_dim: int,
|
64 |
+
output_dim: int,
|
65 |
+
activation: torch.nn.Module = torch.nn.ReLU(),
|
66 |
+
bias: bool = True,
|
67 |
+
norm: Optional[str] = "layer", # Options: ada/batch/layer
|
68 |
+
dropout: float = 0.0,
|
69 |
+
norm_cond_dim: int = -1,
|
70 |
+
) -> SequentialCond:
|
71 |
+
layers = []
|
72 |
+
layers.append(torch.nn.Linear(input_dim, output_dim, bias=bias))
|
73 |
+
if norm is not None:
|
74 |
+
layers.append(normalization_layer(norm, output_dim, norm_cond_dim))
|
75 |
+
layers.append(copy.deepcopy(activation))
|
76 |
+
if dropout > 0.0:
|
77 |
+
layers.append(torch.nn.Dropout(dropout))
|
78 |
+
return SequentialCond(*layers)
|
79 |
+
|
80 |
+
|
81 |
+
def create_simple_mlp(
|
82 |
+
input_dim: int,
|
83 |
+
hidden_dims: List[int],
|
84 |
+
output_dim: int,
|
85 |
+
activation: torch.nn.Module = torch.nn.ReLU(),
|
86 |
+
bias: bool = True,
|
87 |
+
norm: Optional[str] = "layer", # Options: ada/batch/layer
|
88 |
+
dropout: float = 0.0,
|
89 |
+
norm_cond_dim: int = -1,
|
90 |
+
) -> SequentialCond:
|
91 |
+
layers = []
|
92 |
+
prev_dim = input_dim
|
93 |
+
for hidden_dim in hidden_dims:
|
94 |
+
layers.extend(
|
95 |
+
linear_norm_activ_dropout(
|
96 |
+
prev_dim, hidden_dim, activation, bias, norm, dropout, norm_cond_dim
|
97 |
+
)
|
98 |
+
)
|
99 |
+
prev_dim = hidden_dim
|
100 |
+
layers.append(torch.nn.Linear(prev_dim, output_dim, bias=bias))
|
101 |
+
return SequentialCond(*layers)
|
102 |
+
|
103 |
+
|
104 |
+
class ResidualMLPBlock(torch.nn.Module):
|
105 |
+
def __init__(
|
106 |
+
self,
|
107 |
+
input_dim: int,
|
108 |
+
hidden_dim: int,
|
109 |
+
num_hidden_layers: int,
|
110 |
+
output_dim: int,
|
111 |
+
activation: torch.nn.Module = torch.nn.ReLU(),
|
112 |
+
bias: bool = True,
|
113 |
+
norm: Optional[str] = "layer", # Options: ada/batch/layer
|
114 |
+
dropout: float = 0.0,
|
115 |
+
norm_cond_dim: int = -1,
|
116 |
+
):
|
117 |
+
super().__init__()
|
118 |
+
if not (input_dim == output_dim == hidden_dim):
|
119 |
+
raise NotImplementedError(
|
120 |
+
f"input_dim {input_dim} != output_dim {output_dim} is not implemented"
|
121 |
+
)
|
122 |
+
|
123 |
+
layers = []
|
124 |
+
prev_dim = input_dim
|
125 |
+
for i in range(num_hidden_layers):
|
126 |
+
layers.append(
|
127 |
+
linear_norm_activ_dropout(
|
128 |
+
prev_dim, hidden_dim, activation, bias, norm, dropout, norm_cond_dim
|
129 |
+
)
|
130 |
+
)
|
131 |
+
prev_dim = hidden_dim
|
132 |
+
self.model = SequentialCond(*layers)
|
133 |
+
self.skip = torch.nn.Identity()
|
134 |
+
|
135 |
+
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
136 |
+
return x + self.model(x, *args, **kwargs)
|
137 |
+
|
138 |
+
|
139 |
+
class ResidualMLP(torch.nn.Module):
|
140 |
+
def __init__(
|
141 |
+
self,
|
142 |
+
input_dim: int,
|
143 |
+
hidden_dim: int,
|
144 |
+
num_hidden_layers: int,
|
145 |
+
output_dim: int,
|
146 |
+
activation: torch.nn.Module = torch.nn.ReLU(),
|
147 |
+
bias: bool = True,
|
148 |
+
norm: Optional[str] = "layer", # Options: ada/batch/layer
|
149 |
+
dropout: float = 0.0,
|
150 |
+
num_blocks: int = 1,
|
151 |
+
norm_cond_dim: int = -1,
|
152 |
+
):
|
153 |
+
super().__init__()
|
154 |
+
self.input_dim = input_dim
|
155 |
+
self.model = SequentialCond(
|
156 |
+
linear_norm_activ_dropout(
|
157 |
+
input_dim, hidden_dim, activation, bias, norm, dropout, norm_cond_dim
|
158 |
+
),
|
159 |
+
*[
|
160 |
+
ResidualMLPBlock(
|
161 |
+
hidden_dim,
|
162 |
+
hidden_dim,
|
163 |
+
num_hidden_layers,
|
164 |
+
hidden_dim,
|
165 |
+
activation,
|
166 |
+
bias,
|
167 |
+
norm,
|
168 |
+
dropout,
|
169 |
+
norm_cond_dim,
|
170 |
+
)
|
171 |
+
for _ in range(num_blocks)
|
172 |
+
],
|
173 |
+
torch.nn.Linear(hidden_dim, output_dim, bias=bias),
|
174 |
+
)
|
175 |
+
|
176 |
+
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
177 |
+
return self.model(x, *args, **kwargs)
|
178 |
+
|
179 |
+
|
180 |
+
class FrequencyEmbedder(torch.nn.Module):
|
181 |
+
def __init__(self, num_frequencies, max_freq_log2):
|
182 |
+
super().__init__()
|
183 |
+
frequencies = 2 ** torch.linspace(0, max_freq_log2, steps=num_frequencies)
|
184 |
+
self.register_buffer("frequencies", frequencies)
|
185 |
+
|
186 |
+
def forward(self, x):
|
187 |
+
# x should be of size (N,) or (N, D)
|
188 |
+
N = x.size(0)
|
189 |
+
if x.dim() == 1: # (N,)
|
190 |
+
x = x.unsqueeze(1) # (N, D) where D=1
|
191 |
+
x_unsqueezed = x.unsqueeze(-1) # (N, D, 1)
|
192 |
+
scaled = self.frequencies.view(1, 1, -1) * x_unsqueezed # (N, D, num_frequencies)
|
193 |
+
s = torch.sin(scaled)
|
194 |
+
c = torch.cos(scaled)
|
195 |
+
embedded = torch.cat([s, c, x_unsqueezed], dim=-1).view(
|
196 |
+
N, -1
|
197 |
+
) # (N, D * 2 * num_frequencies + D)
|
198 |
+
return embedded
|
199 |
+
|
amr/models/heads/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .smal_head import build_smal_head
|
amr/models/heads/smal_head.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import einops
|
5 |
+
from ...utils.geometry import rot6d_to_rotmat, aa_to_rotmat
|
6 |
+
from ..components.pose_transformer import TransformerDecoder
|
7 |
+
|
8 |
+
|
9 |
+
def build_smal_head(cfg):
|
10 |
+
smal_head_type = cfg.MODEL.SMAL_HEAD.get('TYPE', 'amr')
|
11 |
+
if smal_head_type == 'transformer_decoder':
|
12 |
+
return SMALTransformerDecoderHead(cfg)
|
13 |
+
else:
|
14 |
+
raise ValueError('Unknown SMAL head type: {}'.format(smal_head_type))
|
15 |
+
|
16 |
+
|
17 |
+
class SMALTransformerDecoderHead(nn.Module):
|
18 |
+
""" Cross-attention based SMAL Transformer decoder
|
19 |
+
"""
|
20 |
+
# Cat (e.g. House Cat/Tiger/Lion), Canine (e.g. Dog/Wolf), Equine (e.g. Horse/Zebra), Bovine (e.g. Cow), Hippo
|
21 |
+
def __init__(self, cfg):
|
22 |
+
super().__init__()
|
23 |
+
self.cfg = cfg
|
24 |
+
self.joint_rep_type = cfg.MODEL.SMAL_HEAD.get('JOINT_REP', '6d')
|
25 |
+
self.joint_rep_dim = {'6d': 6, 'aa': 3}[self.joint_rep_type]
|
26 |
+
npose = self.joint_rep_dim * (cfg.SMAL.NUM_JOINTS + 1)
|
27 |
+
self.npose = npose
|
28 |
+
self.input_is_mean_shape = cfg.MODEL.SMAL_HEAD.get('TRANSFORMER_INPUT', 'zero') == 'mean_shape'
|
29 |
+
transformer_args = dict(
|
30 |
+
num_tokens=1,
|
31 |
+
token_dim=(npose + 10 + 3) if self.input_is_mean_shape else 1,
|
32 |
+
dim=1024,
|
33 |
+
)
|
34 |
+
|
35 |
+
# transformer_args = (transformer_args | dict(cfg.MODEL.SMAL_HEAD.TRANSFORMER_DECODER))
|
36 |
+
# For compatibility
|
37 |
+
transformer_args = {**transformer_args, **dict(cfg.MODEL.SMAL_HEAD.TRANSFORMER_DECODER)}
|
38 |
+
|
39 |
+
self.transformer = TransformerDecoder(
|
40 |
+
**transformer_args
|
41 |
+
)
|
42 |
+
dim = transformer_args['dim']
|
43 |
+
self.decpose = nn.Linear(dim, npose)
|
44 |
+
self.decshape = nn.Linear(dim, 41)
|
45 |
+
self.deccam = nn.Linear(dim, 3)
|
46 |
+
|
47 |
+
if cfg.MODEL.SMAL_HEAD.get('INIT_DECODER_XAVIER', False):
|
48 |
+
# True by default in MLP. False by default in Transformer
|
49 |
+
nn.init.xavier_uniform_(self.decpose.weight, gain=0.01)
|
50 |
+
nn.init.xavier_uniform_(self.decshape.weight, gain=0.01)
|
51 |
+
nn.init.xavier_uniform_(self.deccam.weight, gain=0.01)
|
52 |
+
|
53 |
+
init_pose = torch.zeros(size=(1, npose), dtype=torch.float32)
|
54 |
+
init_betas = torch.zeros(size=(1, 41), dtype=torch.float32)
|
55 |
+
init_cam = torch.zeros(size=(1, 3), dtype=torch.float32)
|
56 |
+
self.register_buffer('init_pose', init_pose)
|
57 |
+
self.register_buffer('init_betas', init_betas)
|
58 |
+
self.register_buffer('init_cam', init_cam)
|
59 |
+
|
60 |
+
def forward(self, x, **kwargs):
|
61 |
+
batch_size = x.shape[0]
|
62 |
+
# category = kwargs["category"]
|
63 |
+
# vit pretrained backbone is channel-first. Change to token-first
|
64 |
+
x = einops.rearrange(x, 'b c h w -> b (h w) c') if len(x.shape) == 4 else x
|
65 |
+
|
66 |
+
init_pose = self.init_pose.expand(batch_size, -1)
|
67 |
+
init_betas = self.init_betas.expand(batch_size, -1) if not self.cfg.MODEL.SMAL_HEAD.get("RES", False) else torch.mean(self.init_betas, dim=0, keepdim=True)
|
68 |
+
# self.init_betas[kwargs["category"]]
|
69 |
+
init_cam = self.init_cam.expand(batch_size, -1)
|
70 |
+
|
71 |
+
pred_pose = init_pose
|
72 |
+
pred_betas = init_betas
|
73 |
+
pred_cam = init_cam
|
74 |
+
pred_pose_list = []
|
75 |
+
pred_betas_list = []
|
76 |
+
pred_cam_list = []
|
77 |
+
for i in range(self.cfg.MODEL.SMAL_HEAD.get('IEF_ITERS', 3)):
|
78 |
+
# Input token to transformer is zero token
|
79 |
+
if self.input_is_mean_shape:
|
80 |
+
token = torch.cat([pred_pose, pred_betas, pred_cam], dim=1)[:, None, :]
|
81 |
+
else:
|
82 |
+
token = torch.zeros(batch_size, 1, 1).to(x.device)
|
83 |
+
|
84 |
+
# Pass through transformer
|
85 |
+
token_out = self.transformer(token, context=x)
|
86 |
+
token_out = token_out.squeeze(1) # (B, C)
|
87 |
+
|
88 |
+
# Readout from token_out
|
89 |
+
pred_pose = self.decpose(token_out) + pred_pose
|
90 |
+
pred_betas = self.decshape(token_out) + pred_betas
|
91 |
+
pred_cam = self.deccam(token_out) + pred_cam
|
92 |
+
pred_pose_list.append(pred_pose)
|
93 |
+
pred_betas_list.append(pred_betas)
|
94 |
+
pred_cam_list.append(pred_cam)
|
95 |
+
|
96 |
+
# Convert self.joint_rep_type -> rotmat
|
97 |
+
joint_conversion_fn = {
|
98 |
+
'6d': rot6d_to_rotmat,
|
99 |
+
'aa': lambda x: aa_to_rotmat(x.view(-1, 3).contiguous())
|
100 |
+
}[self.joint_rep_type]
|
101 |
+
|
102 |
+
pred_smal_params_list = {}
|
103 |
+
pred_smal_params_list['pose'] = torch.cat(
|
104 |
+
[joint_conversion_fn(pbp).view(batch_size, -1, 3, 3)[:, 1:, :, :] for pbp in pred_pose_list], dim=0)
|
105 |
+
pred_smal_params_list['betas'] = torch.cat(pred_betas_list, dim=0)
|
106 |
+
pred_smal_params_list['cam'] = torch.cat(pred_cam_list, dim=0)
|
107 |
+
pred_pose = joint_conversion_fn(pred_pose).view(batch_size, self.cfg.SMAL.NUM_JOINTS + 1, 3, 3)
|
108 |
+
|
109 |
+
pred_smal_params = {'global_orient': pred_pose[:, [0]],
|
110 |
+
'pose': pred_pose[:, 1:],
|
111 |
+
'betas': pred_betas,
|
112 |
+
}
|
113 |
+
return pred_smal_params, pred_cam, pred_smal_params_list
|
114 |
+
|
115 |
+
|
116 |
+
|
amr/models/smal_warapper.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from torch import nn
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import pickle
|
6 |
+
import cv2
|
7 |
+
from typing import Optional, Tuple, NewType
|
8 |
+
from dataclasses import dataclass
|
9 |
+
import smplx
|
10 |
+
from smplx.lbs import vertices2joints, lbs
|
11 |
+
from smplx.utils import MANOOutput, to_tensor, ModelOutput
|
12 |
+
from smplx.vertex_ids import vertex_ids
|
13 |
+
|
14 |
+
Tensor = NewType('Tensor', torch.Tensor)
|
15 |
+
keypoint_vertices_idx = [[1068, 1080, 1029, 1226], [2660, 3030, 2675, 3038], [910], [360, 1203, 1235, 1230],
|
16 |
+
[3188, 3156, 2327, 3183], [1976, 1974, 1980, 856], [3854, 2820, 3852, 3858], [452, 1811],
|
17 |
+
[416, 235, 182], [2156, 2382, 2203], [829], [2793], [60, 114, 186, 59],
|
18 |
+
[2091, 2037, 2036, 2160], [384, 799, 1169, 431], [2351, 2763, 2397, 3127],
|
19 |
+
[221, 104], [2754, 2192], [191, 1158, 3116, 2165],
|
20 |
+
[28, 1109, 1110, 1111, 1835, 1836, 3067, 3068, 3069],
|
21 |
+
[498, 499, 500, 501, 502, 503], [2463, 2464, 2465, 2466, 2467, 2468],
|
22 |
+
[764, 915, 916, 917, 934, 935, 956], [2878, 2879, 2880, 2897, 2898, 2919, 3751],
|
23 |
+
[1039, 1845, 1846, 1870, 1879, 1919, 2997, 3761, 3762],
|
24 |
+
[0, 464, 465, 726, 1824, 2429, 2430, 2690]]
|
25 |
+
|
26 |
+
name2id35 = {'RFoot': 14, 'RFootBack': 24, 'spine1': 4, 'Head': 16, 'LLegBack3': 19, 'RLegBack1': 21, 'pelvis0': 1,
|
27 |
+
'RLegBack3': 23, 'LLegBack2': 18, 'spine0': 3, 'spine3': 6, 'spine2': 5, 'Mouth': 32, 'Neck': 15,
|
28 |
+
'LFootBack': 20, 'LLegBack1': 17, 'RLeg3': 13, 'RLeg2': 12, 'LLeg1': 7, 'LLeg3': 9, 'RLeg1': 11,
|
29 |
+
'LLeg2': 8, 'spine': 2, 'LFoot': 10, 'Tail7': 31, 'Tail6': 30, 'Tail5': 29, 'Tail4': 28, 'Tail3': 27,
|
30 |
+
'Tail2': 26, 'Tail1': 25, 'RLegBack2': 22, 'root': 0, 'LEar': 33, 'REar': 34, 'EndNose': 35, 'Chin': 36,
|
31 |
+
'RightEarTip': 37, 'LeftEarTip': 38, 'LeftEye': 39, 'RightEye': 40}
|
32 |
+
|
33 |
+
@dataclass
|
34 |
+
class SMALOutput(ModelOutput):
|
35 |
+
betas: Optional[Tensor] = None
|
36 |
+
pose: Optional[Tensor] = None
|
37 |
+
|
38 |
+
|
39 |
+
class SMALLayer(nn.Module):
|
40 |
+
def __init__(self, num_betas=41, **kwargs):
|
41 |
+
super().__init__()
|
42 |
+
self.num_betas = num_betas
|
43 |
+
self.register_buffer("shapedirs", torch.from_numpy(np.array(kwargs['shapedirs'], dtype=np.float32))[:, :, :num_betas]) # [3889, 3, 41]
|
44 |
+
self.register_buffer("v_template", torch.from_numpy(np.array(kwargs['v_template']).astype(np.float32))) # [3889, 3]
|
45 |
+
self.register_buffer("posedirs", torch.from_numpy(np.array(kwargs['posedirs'], dtype=np.float32)).reshape(-1,
|
46 |
+
34*9).T) # [34*9, 11667]
|
47 |
+
self.register_buffer("J_regressor", torch.from_numpy(kwargs['J_regressor'].toarray().astype(np.float32))) # [33, 3389]
|
48 |
+
self.register_buffer("lbs_weights", torch.from_numpy(np.array(kwargs['weights'], dtype=np.float32))) # [3889, 33]
|
49 |
+
self.register_buffer("faces", torch.from_numpy(np.array(kwargs['f'], dtype=np.int32))) # [7774, 3]
|
50 |
+
|
51 |
+
kintree_table = kwargs['kintree_table']
|
52 |
+
# self.register_buffer("parents", torch.from_numpy(kintree_table[0].astype(np.int32)))
|
53 |
+
id_to_col = {kintree_table[1, i]: i for i in range(kintree_table.shape[1])}
|
54 |
+
self.register_buffer("parents", torch.tensor([0] + [id_to_col[kintree_table[0, i]] for i in range(1, kintree_table.shape[1])],
|
55 |
+
dtype=torch.long))
|
56 |
+
|
57 |
+
def forward(
|
58 |
+
self,
|
59 |
+
betas: Optional[Tensor] = None,
|
60 |
+
global_orient: Optional[Tensor] = None,
|
61 |
+
pose: Optional[Tensor] = None,
|
62 |
+
transl: Optional[Tensor] = None,
|
63 |
+
return_verts: bool = True,
|
64 |
+
return_full_pose: bool = False,
|
65 |
+
**kwargs):
|
66 |
+
"""
|
67 |
+
Args:
|
68 |
+
betas: [batch_size, 10]
|
69 |
+
global_orient: [batch_size, 1, 3, 3]
|
70 |
+
pose: [batch_size, num_joints, 3, 3]
|
71 |
+
transl: [batch_size, num_joints, 3]
|
72 |
+
return_verts:
|
73 |
+
return_full_pose:
|
74 |
+
**kwargs:
|
75 |
+
Returns:
|
76 |
+
"""
|
77 |
+
device, dtype = betas.device, betas.dtype
|
78 |
+
if global_orient is None:
|
79 |
+
batch_size = 1
|
80 |
+
global_orient = torch.eye(3, device=device, dtype=dtype).view(
|
81 |
+
1, 1, 3, 3).expand(batch_size, -1, -1, -1).contiguous()
|
82 |
+
else:
|
83 |
+
batch_size = global_orient.shape[0]
|
84 |
+
if pose is None:
|
85 |
+
pose = torch.eye(3, device=device, dtype=dtype).view(
|
86 |
+
1, 1, 3, 3).expand(batch_size, 34, -1, -1).contiguous()
|
87 |
+
if betas is None:
|
88 |
+
betas = torch.zeros(
|
89 |
+
[batch_size, self.num_betas], dtype=dtype, device=device)
|
90 |
+
if transl is None:
|
91 |
+
transl = torch.zeros([batch_size, 3], dtype=dtype, device=device)
|
92 |
+
|
93 |
+
full_pose = torch.cat([global_orient, pose], dim=1)
|
94 |
+
vertices, joints = lbs(betas, full_pose, self.v_template,
|
95 |
+
self.shapedirs, self.posedirs,
|
96 |
+
self.J_regressor, self.parents,
|
97 |
+
self.lbs_weights, pose2rot=False)
|
98 |
+
|
99 |
+
if transl is not None:
|
100 |
+
joints = joints + transl.unsqueeze(dim=1)
|
101 |
+
vertices = vertices + transl.unsqueeze(dim=1)
|
102 |
+
|
103 |
+
output = SMALOutput(
|
104 |
+
vertices=vertices if return_verts else None,
|
105 |
+
joints=joints if return_verts else None,
|
106 |
+
betas=betas,
|
107 |
+
global_orient=global_orient,
|
108 |
+
pose=pose,
|
109 |
+
transl=transl,
|
110 |
+
full_pose=full_pose if return_full_pose else None,
|
111 |
+
)
|
112 |
+
return output
|
113 |
+
|
114 |
+
|
115 |
+
class SMAL(SMALLayer):
|
116 |
+
def __init__(self, **kwargs):
|
117 |
+
super(SMAL, self).__init__(**kwargs)
|
118 |
+
|
119 |
+
def forward(self, *args, **kwargs):
|
120 |
+
smal_output = super(SMAL, self).forward(**kwargs)
|
121 |
+
|
122 |
+
keypoint = []
|
123 |
+
for kp_v in keypoint_vertices_idx:
|
124 |
+
keypoint.append(smal_output.vertices[:, kp_v, :].mean(dim=1))
|
125 |
+
smal_output.joints = torch.stack(keypoint, dim=1)
|
126 |
+
return smal_output
|
127 |
+
|
128 |
+
|
amr/utils/__init__.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import Any
|
3 |
+
|
4 |
+
|
5 |
+
def recursive_to(x: Any, target: torch.device):
|
6 |
+
"""
|
7 |
+
Recursively transfer a batch of data to the target device
|
8 |
+
Args:
|
9 |
+
x (Any): Batch of data.
|
10 |
+
target (torch.device): Target device.
|
11 |
+
Returns:
|
12 |
+
Batch of data where all tensors are transfered to the target device.
|
13 |
+
"""
|
14 |
+
if isinstance(x, dict):
|
15 |
+
return {k: recursive_to(v, target) for k, v in x.items()}
|
16 |
+
elif isinstance(x, torch.Tensor):
|
17 |
+
return x.to(target)
|
18 |
+
elif isinstance(x, list):
|
19 |
+
return [recursive_to(i, target) for i in x]
|
20 |
+
else:
|
21 |
+
return x
|
amr/utils/geometry.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
import torch
|
3 |
+
from torch.nn import functional as F
|
4 |
+
|
5 |
+
|
6 |
+
def aa_to_rotmat(theta: torch.Tensor):
|
7 |
+
"""
|
8 |
+
Convert axis-angle representation to rotation matrix.
|
9 |
+
Works by first converting it to a quaternion.
|
10 |
+
Args:
|
11 |
+
theta (torch.Tensor): Tensor of shape (B, 3) containing axis-angle representations.
|
12 |
+
Returns:
|
13 |
+
torch.Tensor: Corresponding rotation matrices with shape (B, 3, 3).
|
14 |
+
"""
|
15 |
+
norm = torch.norm(theta + 1e-8, p=2, dim=1)
|
16 |
+
angle = torch.unsqueeze(norm, -1)
|
17 |
+
normalized = torch.div(theta, angle)
|
18 |
+
angle = angle * 0.5
|
19 |
+
v_cos = torch.cos(angle)
|
20 |
+
v_sin = torch.sin(angle)
|
21 |
+
quat = torch.cat([v_cos, v_sin * normalized], dim=1)
|
22 |
+
return quat_to_rotmat(quat)
|
23 |
+
|
24 |
+
|
25 |
+
def quat_to_rotmat(quat: torch.Tensor) -> torch.Tensor:
|
26 |
+
"""
|
27 |
+
Convert quaternion representation to rotation matrix.
|
28 |
+
Args:
|
29 |
+
quat (torch.Tensor) of shape (B, 4); 4 <===> (w, x, y, z).
|
30 |
+
Returns:
|
31 |
+
torch.Tensor: Corresponding rotation matrices with shape (B, 3, 3).
|
32 |
+
"""
|
33 |
+
norm_quat = quat
|
34 |
+
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True)
|
35 |
+
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3]
|
36 |
+
|
37 |
+
B = quat.size(0)
|
38 |
+
|
39 |
+
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
|
40 |
+
wx, wy, wz = w * x, w * y, w * z
|
41 |
+
xy, xz, yz = x * y, x * z, y * z
|
42 |
+
|
43 |
+
rotMat = torch.stack([w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz,
|
44 |
+
2 * wz + 2 * xy, w2 - x2 + y2 - z2, 2 * yz - 2 * wx,
|
45 |
+
2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 - x2 - y2 + z2], dim=1).view(B, 3, 3)
|
46 |
+
return rotMat
|
47 |
+
|
48 |
+
|
49 |
+
def rot6d_to_rotmat(x: torch.Tensor) -> torch.Tensor:
|
50 |
+
"""
|
51 |
+
Convert 6D rotation representation to 3x3 rotation matrix.
|
52 |
+
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019
|
53 |
+
Args:
|
54 |
+
x (torch.Tensor): (B,6) Batch of 6-D rotation representations.
|
55 |
+
Returns:
|
56 |
+
torch.Tensor: Batch of corresponding rotation matrices with shape (B,3,3).
|
57 |
+
"""
|
58 |
+
x = x.reshape(-1, 2, 3).permute(0, 2, 1).contiguous()
|
59 |
+
a1 = x[:, :, 0]
|
60 |
+
a2 = x[:, :, 1]
|
61 |
+
b1 = F.normalize(a1)
|
62 |
+
b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1)
|
63 |
+
b3 = torch.cross(b1, b2, dim=1)
|
64 |
+
return torch.stack((b1, b2, b3), dim=-1)
|
65 |
+
|
66 |
+
|
67 |
+
def perspective_projection(points: torch.Tensor,
|
68 |
+
translation: torch.Tensor,
|
69 |
+
focal_length: torch.Tensor,
|
70 |
+
camera_center: Optional[torch.Tensor] = None,
|
71 |
+
rotation: Optional[torch.Tensor] = None) -> torch.Tensor:
|
72 |
+
"""
|
73 |
+
Computes the perspective projection of a set of 3D points.
|
74 |
+
Args:
|
75 |
+
points (torch.Tensor): Tensor of shape (B, N, 3) containing the input 3D points.
|
76 |
+
translation (torch.Tensor): Tensor of shape (B, 3) containing the 3D camera translation.
|
77 |
+
focal_length (torch.Tensor): Tensor of shape (B, 2) containing the focal length in pixels.
|
78 |
+
camera_center (torch.Tensor): Tensor of shape (B, 2) containing the camera center in pixels.
|
79 |
+
rotation (torch.Tensor): Tensor of shape (B, 3, 3) containing the camera rotation.
|
80 |
+
Returns:
|
81 |
+
torch.Tensor: Tensor of shape (B, N, 2) containing the projection of the input points.
|
82 |
+
"""
|
83 |
+
batch_size = points.shape[0]
|
84 |
+
if rotation is None:
|
85 |
+
rotation = torch.eye(3, device=points.device, dtype=points.dtype).unsqueeze(0).expand(batch_size, -1, -1)
|
86 |
+
if camera_center is None:
|
87 |
+
camera_center = torch.zeros(batch_size, 2, device=points.device, dtype=points.dtype)
|
88 |
+
# Populate intrinsic camera matrix K.
|
89 |
+
K = torch.zeros([batch_size, 3, 3], device=points.device, dtype=points.dtype)
|
90 |
+
K[:, 0, 0] = focal_length[:, 0]
|
91 |
+
K[:, 1, 1] = focal_length[:, 1]
|
92 |
+
K[:, 2, 2] = 1.
|
93 |
+
K[:, :-1, -1] = camera_center
|
94 |
+
|
95 |
+
# Transform points
|
96 |
+
points = torch.einsum('bij,bkj->bki', rotation, points)
|
97 |
+
points = points + translation.unsqueeze(1)
|
98 |
+
|
99 |
+
# Apply perspective distortion
|
100 |
+
projected_points = points / points[:, :, -1].unsqueeze(-1)
|
101 |
+
|
102 |
+
# Apply camera intrinsics
|
103 |
+
projected_points = torch.einsum('bij,bkj->bki', K, projected_points)
|
104 |
+
|
105 |
+
return projected_points[:, :, :-1]
|
amr/utils/pylogger.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
|
3 |
+
from pytorch_lightning.utilities import rank_zero_only
|
4 |
+
|
5 |
+
|
6 |
+
def get_pylogger(name=__name__) -> logging.Logger:
|
7 |
+
"""Initializes multi-GPU-friendly python command line logger."""
|
8 |
+
|
9 |
+
logger = logging.getLogger(name)
|
10 |
+
|
11 |
+
# this ensures all logging levels get marked with the rank zero decorator
|
12 |
+
# otherwise logs would get multiplied for each GPU process in multi-GPU setup
|
13 |
+
logging_levels = ("debug", "info", "warning", "error", "exception", "fatal", "critical")
|
14 |
+
for level in logging_levels:
|
15 |
+
setattr(logger, level, rank_zero_only(getattr(logger, level)))
|
16 |
+
|
17 |
+
return logger
|
amr/utils/renderer.py
ADDED
@@ -0,0 +1,409 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
if 'PYOPENGL_PLATFORM' not in os.environ:
|
4 |
+
os.environ['PYOPENGL_PLATFORM'] = 'egl'
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
import pyrender
|
8 |
+
import trimesh
|
9 |
+
import cv2
|
10 |
+
from yacs.config import CfgNode
|
11 |
+
from typing import List, Optional
|
12 |
+
|
13 |
+
|
14 |
+
def cam_crop_to_full(cam_bbox, box_center, box_size, img_size, focal_length=5000.):
|
15 |
+
# Convert cam_bbox to full image
|
16 |
+
img_w, img_h = img_size[:, 0], img_size[:, 1]
|
17 |
+
cx, cy, b = box_center[:, 0], box_center[:, 1], box_size
|
18 |
+
w_2, h_2 = img_w / 2., img_h / 2.
|
19 |
+
bs = b * cam_bbox[:, 0] + 1e-9
|
20 |
+
tz = 2 * focal_length / bs
|
21 |
+
tx = (2 * (cx - w_2) / bs) + cam_bbox[:, 1]
|
22 |
+
ty = (2 * (cy - h_2) / bs) + cam_bbox[:, 2]
|
23 |
+
full_cam = torch.stack([tx, ty, tz], dim=-1)
|
24 |
+
return full_cam
|
25 |
+
|
26 |
+
|
27 |
+
def get_light_poses(n_lights=5, elevation=np.pi / 3, dist=12):
|
28 |
+
# get lights in a circle around origin at elevation
|
29 |
+
thetas = elevation * np.ones(n_lights)
|
30 |
+
phis = 2 * np.pi * np.arange(n_lights) / n_lights
|
31 |
+
poses = []
|
32 |
+
trans = make_translation(torch.tensor([0, 0, dist]))
|
33 |
+
for phi, theta in zip(phis, thetas):
|
34 |
+
rot = make_rotation(rx=-theta, ry=phi, order="xyz")
|
35 |
+
poses.append((rot @ trans).numpy())
|
36 |
+
return poses
|
37 |
+
|
38 |
+
|
39 |
+
def make_translation(t):
|
40 |
+
return make_4x4_pose(torch.eye(3), t)
|
41 |
+
|
42 |
+
|
43 |
+
def make_rotation(rx=0, ry=0, rz=0, order="xyz"):
|
44 |
+
Rx = rotx(rx)
|
45 |
+
Ry = roty(ry)
|
46 |
+
Rz = rotz(rz)
|
47 |
+
if order == "xyz":
|
48 |
+
R = Rz @ Ry @ Rx
|
49 |
+
elif order == "xzy":
|
50 |
+
R = Ry @ Rz @ Rx
|
51 |
+
elif order == "yxz":
|
52 |
+
R = Rz @ Rx @ Ry
|
53 |
+
elif order == "yzx":
|
54 |
+
R = Rx @ Rz @ Ry
|
55 |
+
elif order == "zyx":
|
56 |
+
R = Rx @ Ry @ Rz
|
57 |
+
elif order == "zxy":
|
58 |
+
R = Ry @ Rx @ Rz
|
59 |
+
return make_4x4_pose(R, torch.zeros(3))
|
60 |
+
|
61 |
+
|
62 |
+
def make_4x4_pose(R, t):
|
63 |
+
"""
|
64 |
+
:param R (*, 3, 3)
|
65 |
+
:param t (*, 3)
|
66 |
+
return (*, 4, 4)
|
67 |
+
"""
|
68 |
+
dims = R.shape[:-2]
|
69 |
+
pose_3x4 = torch.cat([R, t.view(*dims, 3, 1)], dim=-1)
|
70 |
+
bottom = (
|
71 |
+
torch.tensor([0, 0, 0, 1], device=R.device)
|
72 |
+
.reshape(*(1,) * len(dims), 1, 4)
|
73 |
+
.expand(*dims, 1, 4)
|
74 |
+
)
|
75 |
+
return torch.cat([pose_3x4, bottom], dim=-2)
|
76 |
+
|
77 |
+
|
78 |
+
def rotx(theta):
|
79 |
+
return torch.tensor(
|
80 |
+
[
|
81 |
+
[1, 0, 0],
|
82 |
+
[0, np.cos(theta), -np.sin(theta)],
|
83 |
+
[0, np.sin(theta), np.cos(theta)],
|
84 |
+
],
|
85 |
+
dtype=torch.float32,
|
86 |
+
)
|
87 |
+
|
88 |
+
|
89 |
+
def roty(theta):
|
90 |
+
return torch.tensor(
|
91 |
+
[
|
92 |
+
[np.cos(theta), 0, np.sin(theta)],
|
93 |
+
[0, 1, 0],
|
94 |
+
[-np.sin(theta), 0, np.cos(theta)],
|
95 |
+
],
|
96 |
+
dtype=torch.float32,
|
97 |
+
)
|
98 |
+
|
99 |
+
|
100 |
+
def rotz(theta):
|
101 |
+
return torch.tensor(
|
102 |
+
[
|
103 |
+
[np.cos(theta), -np.sin(theta), 0],
|
104 |
+
[np.sin(theta), np.cos(theta), 0],
|
105 |
+
[0, 0, 1],
|
106 |
+
],
|
107 |
+
dtype=torch.float32,
|
108 |
+
)
|
109 |
+
|
110 |
+
|
111 |
+
def create_raymond_lights() -> List[pyrender.Node]:
|
112 |
+
"""
|
113 |
+
Return raymond light nodes for the scene.
|
114 |
+
"""
|
115 |
+
thetas = np.pi * np.array([1.0 / 6.0, 1.0 / 6.0, 1.0 / 6.0])
|
116 |
+
phis = np.pi * np.array([0.0, 2.0 / 3.0, 4.0 / 3.0])
|
117 |
+
|
118 |
+
nodes = []
|
119 |
+
|
120 |
+
for phi, theta in zip(phis, thetas):
|
121 |
+
xp = np.sin(theta) * np.cos(phi)
|
122 |
+
yp = np.sin(theta) * np.sin(phi)
|
123 |
+
zp = np.cos(theta)
|
124 |
+
|
125 |
+
z = np.array([xp, yp, zp])
|
126 |
+
z = z / np.linalg.norm(z)
|
127 |
+
x = np.array([-z[1], z[0], 0.0])
|
128 |
+
if np.linalg.norm(x) == 0:
|
129 |
+
x = np.array([1.0, 0.0, 0.0])
|
130 |
+
x = x / np.linalg.norm(x)
|
131 |
+
y = np.cross(z, x)
|
132 |
+
|
133 |
+
matrix = np.eye(4)
|
134 |
+
matrix[:3, :3] = np.c_[x, y, z]
|
135 |
+
nodes.append(pyrender.Node(
|
136 |
+
light=pyrender.DirectionalLight(color=np.ones(3), intensity=1.0),
|
137 |
+
matrix=matrix
|
138 |
+
))
|
139 |
+
|
140 |
+
return nodes
|
141 |
+
|
142 |
+
|
143 |
+
class Renderer:
|
144 |
+
|
145 |
+
def __init__(self, cfg: CfgNode, faces: np.array):
|
146 |
+
"""
|
147 |
+
Wrapper around the pyrender renderer to render MANO meshes.
|
148 |
+
Args:
|
149 |
+
cfg (CfgNode): Model config file.
|
150 |
+
faces (np.array): Array of shape (F, 3) containing the mesh faces.
|
151 |
+
"""
|
152 |
+
self.cfg = cfg
|
153 |
+
self.focal_length = cfg.EXTRA.FOCAL_LENGTH
|
154 |
+
self.img_res = cfg.MODEL.IMAGE_SIZE
|
155 |
+
|
156 |
+
self.camera_center = [self.img_res // 2, self.img_res // 2]
|
157 |
+
self.faces = faces.cpu().numpy()
|
158 |
+
|
159 |
+
def __call__(self,
|
160 |
+
vertices: np.array,
|
161 |
+
camera_translation: np.array,
|
162 |
+
image: torch.Tensor,
|
163 |
+
full_frame: bool = False,
|
164 |
+
imgname: Optional[str] = None,
|
165 |
+
side_view=False, rot_angle=90,
|
166 |
+
mesh_base_color=(1.0, 1.0, 0.9),
|
167 |
+
scene_bg_color=(0, 0, 0),
|
168 |
+
return_rgba=False,
|
169 |
+
) -> np.array:
|
170 |
+
"""
|
171 |
+
Render meshes on input image
|
172 |
+
Args:
|
173 |
+
vertices (np.array): Array of shape (V, 3) containing the mesh vertices.
|
174 |
+
camera_translation (np.array): Array of shape (3,) with the camera translation.
|
175 |
+
image (torch.Tensor): Tensor of shape (3, H, W) containing the image crop with normalized pixel values.
|
176 |
+
full_frame (bool): If True, then render on the full image.
|
177 |
+
imgname (Optional[str]): Contains the original image filenamee. Used only if full_frame == True.
|
178 |
+
"""
|
179 |
+
|
180 |
+
if full_frame:
|
181 |
+
image = cv2.imread(imgname).astype(np.float32)[:, :, ::-1] / 255.
|
182 |
+
else:
|
183 |
+
image = (image.clone() * 255.) * (torch.tensor(self.cfg.MODEL.IMAGE_STD, device=image.device).reshape(3, 1, 1) * 255.)
|
184 |
+
image = image + (torch.tensor(self.cfg.MODEL.IMAGE_MEAN, device=image.device).reshape(3, 1, 1) * 255)
|
185 |
+
image = image.permute(1, 2, 0).cpu().numpy() / 255.
|
186 |
+
|
187 |
+
renderer = pyrender.OffscreenRenderer(viewport_width=image.shape[1],
|
188 |
+
viewport_height=image.shape[0],
|
189 |
+
point_size=1.0)
|
190 |
+
material = pyrender.MetallicRoughnessMaterial(
|
191 |
+
metallicFactor=0.0,
|
192 |
+
alphaMode='OPAQUE',
|
193 |
+
baseColorFactor=(*mesh_base_color, 1.0))
|
194 |
+
|
195 |
+
camera_translation[0] *= -1.
|
196 |
+
|
197 |
+
mesh = trimesh.Trimesh(vertices.copy(), self.faces.copy())
|
198 |
+
if side_view:
|
199 |
+
rot = trimesh.transformations.rotation_matrix(
|
200 |
+
np.radians(rot_angle), [0, 1, 0])
|
201 |
+
mesh.apply_transform(rot)
|
202 |
+
rot = trimesh.transformations.rotation_matrix(
|
203 |
+
np.radians(180), [1, 0, 0])
|
204 |
+
mesh.apply_transform(rot)
|
205 |
+
mesh = pyrender.Mesh.from_trimesh(mesh, material=material)
|
206 |
+
|
207 |
+
scene = pyrender.Scene(bg_color=[*scene_bg_color, 0.0],
|
208 |
+
ambient_light=(0.3, 0.3, 0.3))
|
209 |
+
scene.add(mesh, 'mesh')
|
210 |
+
|
211 |
+
camera_pose = np.eye(4)
|
212 |
+
camera_pose[:3, 3] = camera_translation
|
213 |
+
camera_center = [image.shape[1] / 2., image.shape[0] / 2.]
|
214 |
+
camera = pyrender.IntrinsicsCamera(fx=self.focal_length, fy=self.focal_length,
|
215 |
+
cx=camera_center[0], cy=camera_center[1], zfar=1e12)
|
216 |
+
scene.add(camera, pose=camera_pose)
|
217 |
+
|
218 |
+
light_nodes = create_raymond_lights()
|
219 |
+
for node in light_nodes:
|
220 |
+
scene.add_node(node)
|
221 |
+
|
222 |
+
color, rend_depth = renderer.render(scene, flags=pyrender.RenderFlags.RGBA)
|
223 |
+
color = color.astype(np.float32) / 255.0
|
224 |
+
renderer.delete()
|
225 |
+
|
226 |
+
if return_rgba:
|
227 |
+
return color
|
228 |
+
|
229 |
+
valid_mask = (color[:, :, -1])[:, :, np.newaxis]
|
230 |
+
if not side_view:
|
231 |
+
output_img = (color[:, :, :3] * valid_mask + (1 - valid_mask) * image)
|
232 |
+
else:
|
233 |
+
output_img = color[:, :, :3]
|
234 |
+
|
235 |
+
output_img = output_img.astype(np.float32)
|
236 |
+
return output_img
|
237 |
+
|
238 |
+
def vertices_to_trimesh(self, vertices, camera_translation, mesh_base_color=(1.0, 1.0, 0.9),
|
239 |
+
rot_axis=[1, 0, 0], rot_angle=0):
|
240 |
+
# material = pyrender.MetallicRoughnessMaterial(
|
241 |
+
# metallicFactor=0.0,
|
242 |
+
# alphaMode='OPAQUE',
|
243 |
+
# baseColorFactor=(*mesh_base_color, 1.0))
|
244 |
+
vertex_colors = np.array([(*mesh_base_color, 1.0)] * vertices.shape[0])
|
245 |
+
mesh = trimesh.Trimesh(vertices.copy() + camera_translation, self.faces.copy(), vertex_colors=vertex_colors)
|
246 |
+
# mesh = trimesh.Trimesh(vertices.copy(), self.faces.copy())
|
247 |
+
|
248 |
+
rot = trimesh.transformations.rotation_matrix(
|
249 |
+
np.radians(rot_angle), rot_axis)
|
250 |
+
mesh.apply_transform(rot)
|
251 |
+
|
252 |
+
rot = trimesh.transformations.rotation_matrix(
|
253 |
+
np.radians(180), [1, 0, 0])
|
254 |
+
mesh.apply_transform(rot)
|
255 |
+
return mesh
|
256 |
+
|
257 |
+
def render_rgba(
|
258 |
+
self,
|
259 |
+
vertices: np.array,
|
260 |
+
cam_t=None,
|
261 |
+
rot=None,
|
262 |
+
rot_axis=[1, 0, 0],
|
263 |
+
rot_angle=0,
|
264 |
+
camera_z=3,
|
265 |
+
# camera_translation: np.array,
|
266 |
+
mesh_base_color=(1.0, 1.0, 0.9),
|
267 |
+
scene_bg_color=(0, 0, 0),
|
268 |
+
render_res=[256, 256],
|
269 |
+
focal_length=None,
|
270 |
+
):
|
271 |
+
|
272 |
+
renderer = pyrender.OffscreenRenderer(viewport_width=render_res[0],
|
273 |
+
viewport_height=render_res[1],
|
274 |
+
point_size=1.0)
|
275 |
+
# material = pyrender.MetallicRoughnessMaterial(
|
276 |
+
# metallicFactor=0.0,
|
277 |
+
# alphaMode='OPAQUE',
|
278 |
+
# baseColorFactor=(*mesh_base_color, 1.0))
|
279 |
+
|
280 |
+
focal_length = focal_length if focal_length is not None else self.focal_length
|
281 |
+
|
282 |
+
if cam_t is not None:
|
283 |
+
camera_translation = cam_t.copy()
|
284 |
+
camera_translation[0] *= -1.
|
285 |
+
else:
|
286 |
+
camera_translation = np.array([0, 0, camera_z * focal_length / render_res[1]])
|
287 |
+
|
288 |
+
mesh = self.vertices_to_trimesh(vertices, np.array([0, 0, 0]), mesh_base_color, rot_axis, rot_angle,
|
289 |
+
)
|
290 |
+
mesh = pyrender.Mesh.from_trimesh(mesh)
|
291 |
+
# mesh = pyrender.Mesh.from_trimesh(mesh, material=material)
|
292 |
+
|
293 |
+
scene = pyrender.Scene(bg_color=[*scene_bg_color, 0.0],
|
294 |
+
ambient_light=(0.3, 0.3, 0.3))
|
295 |
+
scene.add(mesh, 'mesh')
|
296 |
+
|
297 |
+
camera_pose = np.eye(4)
|
298 |
+
camera_pose[:3, 3] = camera_translation
|
299 |
+
camera_center = [render_res[0] / 2., render_res[1] / 2.]
|
300 |
+
camera = pyrender.IntrinsicsCamera(fx=focal_length, fy=focal_length,
|
301 |
+
cx=camera_center[0], cy=camera_center[1], zfar=1e12)
|
302 |
+
|
303 |
+
# Create camera node and add it to pyRender scene
|
304 |
+
camera_node = pyrender.Node(camera=camera, matrix=camera_pose)
|
305 |
+
scene.add_node(camera_node)
|
306 |
+
self.add_point_lighting(scene, camera_node)
|
307 |
+
self.add_lighting(scene, camera_node)
|
308 |
+
|
309 |
+
light_nodes = create_raymond_lights()
|
310 |
+
for node in light_nodes:
|
311 |
+
scene.add_node(node)
|
312 |
+
|
313 |
+
color, rend_depth = renderer.render(scene, flags=pyrender.RenderFlags.RGBA)
|
314 |
+
color = color.astype(np.float32) / 255.0
|
315 |
+
renderer.delete()
|
316 |
+
|
317 |
+
return color
|
318 |
+
|
319 |
+
def render_rgba_multiple(
|
320 |
+
self,
|
321 |
+
vertices: List[np.array],
|
322 |
+
cam_t: List[np.array],
|
323 |
+
rot_axis=[1, 0, 0],
|
324 |
+
rot_angle=0,
|
325 |
+
mesh_base_color=(1.0, 1.0, 0.9),
|
326 |
+
scene_bg_color=(0, 0, 0),
|
327 |
+
render_res=[256, 256],
|
328 |
+
focal_length=None,
|
329 |
+
):
|
330 |
+
|
331 |
+
renderer = pyrender.OffscreenRenderer(viewport_width=render_res[0],
|
332 |
+
viewport_height=render_res[1],
|
333 |
+
point_size=1.0)
|
334 |
+
# material = pyrender.MetallicRoughnessMaterial(
|
335 |
+
# metallicFactor=0.0,
|
336 |
+
# alphaMode='OPAQUE',
|
337 |
+
# baseColorFactor=(*mesh_base_color, 1.0))
|
338 |
+
|
339 |
+
mesh_list = [pyrender.Mesh.from_trimesh(
|
340 |
+
self.vertices_to_trimesh(vvv, ttt.copy(), mesh_base_color, rot_axis, rot_angle)) for
|
341 |
+
vvv, ttt in zip(vertices, cam_t)]
|
342 |
+
|
343 |
+
scene = pyrender.Scene(bg_color=[*scene_bg_color, 0.0],
|
344 |
+
ambient_light=(0.3, 0.3, 0.3))
|
345 |
+
for i, mesh in enumerate(mesh_list):
|
346 |
+
scene.add(mesh, f'mesh_{i}')
|
347 |
+
|
348 |
+
camera_pose = np.eye(4)
|
349 |
+
# camera_pose[:3, 3] = camera_translation
|
350 |
+
camera_center = [render_res[0] / 2., render_res[1] / 2.]
|
351 |
+
focal_length = focal_length if focal_length is not None else self.focal_length
|
352 |
+
camera = pyrender.IntrinsicsCamera(fx=focal_length, fy=focal_length,
|
353 |
+
cx=camera_center[0], cy=camera_center[1], zfar=1e12)
|
354 |
+
|
355 |
+
# Create camera node and add it to pyRender scene
|
356 |
+
camera_node = pyrender.Node(camera=camera, matrix=camera_pose)
|
357 |
+
scene.add_node(camera_node)
|
358 |
+
self.add_point_lighting(scene, camera_node)
|
359 |
+
self.add_lighting(scene, camera_node)
|
360 |
+
|
361 |
+
light_nodes = create_raymond_lights()
|
362 |
+
for node in light_nodes:
|
363 |
+
scene.add_node(node)
|
364 |
+
|
365 |
+
color, rend_depth = renderer.render(scene, flags=pyrender.RenderFlags.RGBA)
|
366 |
+
color = color.astype(np.float32) / 255.0
|
367 |
+
renderer.delete()
|
368 |
+
|
369 |
+
return color
|
370 |
+
|
371 |
+
def add_lighting(self, scene, cam_node, color=np.ones(3), intensity=1.0):
|
372 |
+
# from phalp.visualize.py_renderer import get_light_poses
|
373 |
+
light_poses = get_light_poses()
|
374 |
+
light_poses.append(np.eye(4))
|
375 |
+
cam_pose = scene.get_pose(cam_node)
|
376 |
+
for i, pose in enumerate(light_poses):
|
377 |
+
matrix = cam_pose @ pose
|
378 |
+
node = pyrender.Node(
|
379 |
+
name=f"light-{i:02d}",
|
380 |
+
light=pyrender.DirectionalLight(color=color, intensity=intensity),
|
381 |
+
matrix=matrix,
|
382 |
+
)
|
383 |
+
if scene.has_node(node):
|
384 |
+
continue
|
385 |
+
scene.add_node(node)
|
386 |
+
|
387 |
+
def add_point_lighting(self, scene, cam_node, color=np.ones(3), intensity=1.0):
|
388 |
+
# from phalp.visualize.py_renderer import get_light_poses
|
389 |
+
light_poses = get_light_poses(dist=0.5)
|
390 |
+
light_poses.append(np.eye(4))
|
391 |
+
cam_pose = scene.get_pose(cam_node)
|
392 |
+
for i, pose in enumerate(light_poses):
|
393 |
+
matrix = cam_pose @ pose
|
394 |
+
# node = pyrender.Node(
|
395 |
+
# name=f"light-{i:02d}",
|
396 |
+
# light=pyrender.DirectionalLight(color=color, intensity=intensity),
|
397 |
+
# matrix=matrix,
|
398 |
+
# )
|
399 |
+
node = pyrender.Node(
|
400 |
+
name=f"plight-{i:02d}",
|
401 |
+
light=pyrender.PointLight(color=color, intensity=intensity),
|
402 |
+
matrix=matrix,
|
403 |
+
)
|
404 |
+
if scene.has_node(node):
|
405 |
+
continue
|
406 |
+
scene.add_node(node)
|
407 |
+
|
408 |
+
|
409 |
+
|
app.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
import tempfile
|
7 |
+
from tqdm import tqdm
|
8 |
+
import torch.utils
|
9 |
+
import trimesh
|
10 |
+
import torch.utils.data
|
11 |
+
import gradio as gr
|
12 |
+
from typing import Union, List, Tuple, Dict
|
13 |
+
from amr.models import AMR
|
14 |
+
from amr.configs import get_config
|
15 |
+
from amr.utils import recursive_to
|
16 |
+
from amr.datasets.vitdet_dataset import ViTDetDataset, DEFAULT_MEAN, DEFAULT_STD
|
17 |
+
from amr.utils.renderer import Renderer, cam_crop_to_full
|
18 |
+
from huggingface_hub import snapshot_download
|
19 |
+
|
20 |
+
LIGHT_BLUE = (0.65098039, 0.74117647, 0.85882353)
|
21 |
+
|
22 |
+
# Load model config
|
23 |
+
path_model_cfg = 'config/config.yaml'
|
24 |
+
model_cfg = get_config(path_model_cfg)
|
25 |
+
|
26 |
+
# Load model
|
27 |
+
repo_id = "luoxue-star/AniMer"
|
28 |
+
local_dir = snapshot_download(repo_id=repo_id)
|
29 |
+
PATH_CHECKPOINT = os.path.join(local_dir, "checkpoint.ckpt")
|
30 |
+
model = AMR.load_from_checkpoint(checkpoint_path=PATH_CHECKPOINT, map_location="cpu",
|
31 |
+
cfg=model_cfg, strict=False)
|
32 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
33 |
+
model = model.to(device)
|
34 |
+
model.eval()
|
35 |
+
|
36 |
+
# Setup the renderer
|
37 |
+
renderer = Renderer(model_cfg, faces=model.smal.faces)
|
38 |
+
|
39 |
+
# Make output directory if it does not exist
|
40 |
+
OUTPUT_FOLDER = "demo_out"
|
41 |
+
os.makedirs(OUTPUT_FOLDER, exist_ok=True)
|
42 |
+
|
43 |
+
|
44 |
+
def predict(im):
|
45 |
+
return im["composite"]
|
46 |
+
|
47 |
+
|
48 |
+
def inference(img: Dict)-> Tuple[Union[np.ndarray|None], List[str]]:
|
49 |
+
img = np.array(img["composite"])[:, :, :-1]
|
50 |
+
boxes = np.array([[0, 0, img.shape[1], img.shape[0]]]) # x1, y1, x2, y2
|
51 |
+
|
52 |
+
# Run AniMer on the crop image
|
53 |
+
dataset = ViTDetDataset(model_cfg, img, boxes)
|
54 |
+
dataloader = torch.utils.data.DataLoader(dataset, batch_size=8)
|
55 |
+
all_verts = []
|
56 |
+
all_cam_t = []
|
57 |
+
temp_name = next(tempfile._get_candidate_names())
|
58 |
+
for batch in tqdm(dataloader):
|
59 |
+
batch = recursive_to(batch, device)
|
60 |
+
with torch.no_grad():
|
61 |
+
out = model(batch)
|
62 |
+
|
63 |
+
pred_cam = out['pred_cam']
|
64 |
+
box_center = batch["box_center"].float()
|
65 |
+
box_size = batch["box_size"].float()
|
66 |
+
img_size = batch["img_size"].float()
|
67 |
+
scaled_focal_length = model_cfg.EXTRA.FOCAL_LENGTH / model_cfg.MODEL.IMAGE_SIZE * img_size.max()
|
68 |
+
pred_cam_t_full = cam_crop_to_full(pred_cam, box_center, box_size, img_size,
|
69 |
+
scaled_focal_length).detach().cpu().numpy()
|
70 |
+
|
71 |
+
# Render the result
|
72 |
+
batch_size = batch['img'].shape[0]
|
73 |
+
for n in range(batch_size):
|
74 |
+
person_id = int(batch['personid'][n])
|
75 |
+
input_patch = (batch['img'][n].cpu() * 255 * (DEFAULT_STD[:, None, None]) + (
|
76 |
+
DEFAULT_MEAN[:, None, None])) / 255.
|
77 |
+
input_patch = input_patch.permute(1, 2, 0).numpy()
|
78 |
+
|
79 |
+
verts = out['pred_vertices'][n].detach().cpu().numpy()
|
80 |
+
cam_t = pred_cam_t_full[n]
|
81 |
+
all_verts.append(verts)
|
82 |
+
all_cam_t.append(cam_t)
|
83 |
+
|
84 |
+
# Render mesh onto the original image
|
85 |
+
if len(all_verts):
|
86 |
+
misc_args = dict(
|
87 |
+
mesh_base_color=LIGHT_BLUE,
|
88 |
+
scene_bg_color=(1, 1, 1),
|
89 |
+
focal_length=scaled_focal_length,
|
90 |
+
)
|
91 |
+
|
92 |
+
cam_view = renderer.render_rgba_multiple(all_verts, cam_t=all_cam_t, render_res=img_size[n], **misc_args)
|
93 |
+
# Overlay image
|
94 |
+
input_img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR).astype(np.float32)[:, :, ::-1] / 255.0
|
95 |
+
input_img = np.concatenate([input_img, np.ones_like(input_img[:, :, :1])], axis=2) # Add alpha channel
|
96 |
+
input_img_overlay = input_img[:, :, :3] * (1 - cam_view[:, :, 3:]) + cam_view[:, :, :3] * cam_view[:, :, 3:]
|
97 |
+
output_img = (255 * input_img_overlay[:, :, ::-1]).astype(np.uint8)[:, :, [2, 1, 0]]
|
98 |
+
|
99 |
+
# Return mesh path
|
100 |
+
trimeshes = [renderer.vertices_to_trimesh(vvv, ttt.copy(), LIGHT_BLUE) for vvv,ttt in zip(all_verts, all_cam_t)]
|
101 |
+
# Join meshes
|
102 |
+
mesh = trimesh.util.concatenate(trimeshes)
|
103 |
+
# Save mesh to file
|
104 |
+
mesh_name = os.path.join(OUTPUT_FOLDER, next(tempfile._get_candidate_names()) + '.obj')
|
105 |
+
trimesh.exchange.export.export_mesh(mesh, mesh_name)
|
106 |
+
|
107 |
+
return (output_img, mesh_name)
|
108 |
+
else:
|
109 |
+
return (None, [])
|
110 |
+
|
111 |
+
|
112 |
+
# with gr.Blocks(title="AniMer", css=".gradio-container") as demo:
|
113 |
+
|
114 |
+
# gr.HTML("""<div style="font-weight:bold; text-align:center; color:royalblue;">AniMer</div>""")
|
115 |
+
|
116 |
+
# with gr.Row():
|
117 |
+
# with gr.Column():
|
118 |
+
# input_image = gr.ImageEditor(label="Input image", sources=["upload", "clipboard"],
|
119 |
+
# brush=False, eraser=False, layers=False, transforms="crop",
|
120 |
+
# interactive=True,
|
121 |
+
# )
|
122 |
+
# crop_image = gr.Image(label="Crop image", sources=[])
|
123 |
+
# input_image.change(predict, outputs=crop_image, inputs=input_image, show_progress="hidden")
|
124 |
+
# with gr.Column():
|
125 |
+
# output_image = gr.Image(label="Overlap image")
|
126 |
+
# output_mesh = gr.Model3D(display_mode="wireframe", label="3D Mesh")
|
127 |
+
|
128 |
+
# gr.HTML("""<br/>""")
|
129 |
+
|
130 |
+
# with gr.Row():
|
131 |
+
# send_btn = gr.Button("Inference")
|
132 |
+
# send_btn.click(fn=inference, inputs=[crop_image], outputs=[output_image, output_mesh])
|
133 |
+
|
134 |
+
# example_images = gr.Examples([
|
135 |
+
# ['example_data/000000015956_horse.png'],
|
136 |
+
# ['example_data/n02101388_1188.png'],
|
137 |
+
# ['example_data/n02412080_12159.png'],
|
138 |
+
# ['example_data/000000101684_zebra.png']
|
139 |
+
# ],
|
140 |
+
# inputs=[input_image])
|
141 |
+
|
142 |
+
# demo.launch(debug=True)
|
143 |
+
|
144 |
+
|
145 |
+
demo = gr.Interface(
|
146 |
+
fn=inference,
|
147 |
+
analytics_enabled=False,
|
148 |
+
inputs=gr.ImageEditor(label="Input image", sources=["upload", "clipboard"], type='pil',
|
149 |
+
brush=False, eraser=False, layers=False, transforms="crop",
|
150 |
+
interactive=True),
|
151 |
+
outputs=[
|
152 |
+
gr.Image(label="Overlap image"),
|
153 |
+
gr.Model3D(display_mode="wireframe", label="3D Mesh"),
|
154 |
+
],
|
155 |
+
title="AniMer",
|
156 |
+
description="""
|
157 |
+
# AniMer: Animal Pose and Shape Estimation Using Family Aware Transformer
|
158 |
+
https://luoxue-star.github.io/AniMer_project_page/
|
159 |
+
## Steps for Use
|
160 |
+
1. **Input**: Select an example image or upload your own image.
|
161 |
+
2. **Crop**: Crop the animal in the image.
|
162 |
+
3. **Output**:
|
163 |
+
- Overlapping Image
|
164 |
+
- 3D Mesh
|
165 |
+
""",
|
166 |
+
examples=[
|
167 |
+
'example_data/000000015956_horse.png',
|
168 |
+
'example_data/n02101388_1188.png',
|
169 |
+
'example_data/n02412080_12159.png',
|
170 |
+
'example_data/000000101684_zebra.png',
|
171 |
+
],
|
172 |
+
)
|
173 |
+
|
174 |
+
demo.launch()
|
175 |
+
|
176 |
+
|
config/config.yaml
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
task_name: train
|
2 |
+
tags:
|
3 |
+
- dev
|
4 |
+
train: true
|
5 |
+
test: false
|
6 |
+
ckpt_path: null
|
7 |
+
seed: null
|
8 |
+
trainer:
|
9 |
+
_target_: pytorch_lightning.Trainer
|
10 |
+
default_root_dir: ${paths.output_dir}
|
11 |
+
accelerator: gpu
|
12 |
+
devices: 1
|
13 |
+
deterministic: false
|
14 |
+
num_sanity_val_steps: 0
|
15 |
+
log_every_n_steps: ${GENERAL.LOG_STEPS}
|
16 |
+
val_check_interval: ${GENERAL.VAL_STEPS}
|
17 |
+
check_val_every_n_epoch: ${GENERAL.VAL_EPOCHS}
|
18 |
+
precision: 16-mixed
|
19 |
+
max_steps: ${GENERAL.TOTAL_STEPS}
|
20 |
+
limit_val_batches: 80
|
21 |
+
paths:
|
22 |
+
root_dir: ${oc.env:PROJECT_ROOT}
|
23 |
+
data_dir: ${paths.root_dir}/data/
|
24 |
+
log_dir: logs/
|
25 |
+
output_dir: ${hydra:runtime.output_dir}
|
26 |
+
work_dir: ${hydra:runtime.cwd}
|
27 |
+
extras:
|
28 |
+
ignore_warnings: false
|
29 |
+
enforce_tags: true
|
30 |
+
print_config: true
|
31 |
+
exp_name: AniMer
|
32 |
+
SMAL:
|
33 |
+
MODEL_PATH: ./data/my_smpl_00781_4_all.pkl
|
34 |
+
NUM_JOINTS: 34
|
35 |
+
EXTRA:
|
36 |
+
FOCAL_LENGTH: 1000
|
37 |
+
NUM_LOG_IMAGES: 4
|
38 |
+
NUM_LOG_SAMPLES_PER_IMAGE: 4
|
39 |
+
PELVIS_IND: 0
|
40 |
+
MODEL:
|
41 |
+
IMAGE_SIZE: 256
|
42 |
+
IMAGE_MEAN:
|
43 |
+
- 0.485
|
44 |
+
- 0.456
|
45 |
+
- 0.406
|
46 |
+
IMAGE_STD:
|
47 |
+
- 0.229
|
48 |
+
- 0.224
|
49 |
+
- 0.225
|
50 |
+
BACKBONE:
|
51 |
+
TYPE: vit
|
52 |
+
SMAL_HEAD:
|
53 |
+
TYPE: transformer_decoder
|
54 |
+
IN_CHANNELS: 2048
|
55 |
+
IEF_ITERS: 1
|
56 |
+
TRANSFORMER_DECODER:
|
57 |
+
depth: 6
|
58 |
+
heads: 8
|
59 |
+
mlp_dim: 1024
|
60 |
+
dim_head: 64
|
61 |
+
dropout: 0.0
|
62 |
+
emb_dropout: 0.0
|
63 |
+
norm: layer
|
64 |
+
context_dim: 1280
|
data/my_smpl_00781_4_all.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:22831db0e0e564dc95128e098da19995c2dda39b1aa18acc1335a6e62e0e3a59
|
3 |
+
size 33686326
|