luonghuyquang
commited on
Commit
•
1336b1e
1
Parent(s):
3566e33
launch!
Browse files- app.py +94 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
|
3 |
+
import random
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
|
5 |
+
import torch
|
6 |
+
import gradio as gr
|
7 |
+
import pandas as pd
|
8 |
+
from datetime import datetime
|
9 |
+
|
10 |
+
# Load emotion model and tokenizer
|
11 |
+
emotion_tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-emotion")
|
12 |
+
emotion_model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-emotion")
|
13 |
+
|
14 |
+
# Load text generation model and tokenizer
|
15 |
+
import os
|
16 |
+
token=os.getenv('hftoken')
|
17 |
+
text_tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it", token=token)
|
18 |
+
text_model = AutoModelForCausalLM.from_pretrained("google/gemma-2-2b-it", token=token)
|
19 |
+
|
20 |
+
# Set device to cpu
|
21 |
+
device = torch.device('cpu')
|
22 |
+
emotion_model.to(device)
|
23 |
+
text_model.to(device)
|
24 |
+
|
25 |
+
|
26 |
+
# Function to predict emotion
|
27 |
+
def get_emotion(text):
|
28 |
+
input_ids = emotion_tokenizer.encode(text + '</s>', return_tensors='pt').to(device)
|
29 |
+
output = emotion_model.generate(input_ids=input_ids, max_length=2)
|
30 |
+
dec = [emotion_tokenizer.decode(ids, skip_special_tokens=True) for ids in output]
|
31 |
+
label = dec[0].strip()
|
32 |
+
return label
|
33 |
+
|
34 |
+
def generate_quote(original_text, emotion):
|
35 |
+
# Generate one inspirational quote based on emotion and original text
|
36 |
+
input_text = f"Text: {original_text}\nEmotion: {emotion}\nInspirational Quote:"
|
37 |
+
input_ids = text_tokenizer(input_text, return_tensors="pt").to(device)
|
38 |
+
outputs = text_model.generate(**input_ids, max_new_tokens=70, do_sample=True, temperature=0.7)
|
39 |
+
generated_text = text_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
40 |
+
|
41 |
+
if "Inspirational Quote:" in generated_text:
|
42 |
+
quote = generated_text.split("Inspirational Quote:")[1].strip().split("\n")[0]
|
43 |
+
else:
|
44 |
+
quote = generated_text.strip()
|
45 |
+
|
46 |
+
return quote
|
47 |
+
|
48 |
+
import os
|
49 |
+
import pandas as pd
|
50 |
+
|
51 |
+
# Ensure file exists and get absolute path
|
52 |
+
csv_file = os.path.join(os.getcwd(), 'diary_entries.csv')
|
53 |
+
if not os.path.exists(csv_file):
|
54 |
+
df = pd.DataFrame(columns=["Date", "Diary Text", "Emotion", "Quote"])
|
55 |
+
df.to_csv(csv_file, index=False)
|
56 |
+
else:
|
57 |
+
df = pd.read_csv(csv_file)
|
58 |
+
|
59 |
+
# Function to handle emotion detection, quote generation, and image display
|
60 |
+
def journal_interface(Diary):
|
61 |
+
try:
|
62 |
+
# Step 1: Detect Emotion
|
63 |
+
emotion = get_emotion(Diary)
|
64 |
+
|
65 |
+
# Step 2: Generate Inspirational Quote
|
66 |
+
quote = generate_quote(Diary, emotion)
|
67 |
+
|
68 |
+
# Step 3: Save to CSV
|
69 |
+
date_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
70 |
+
new_entry = pd.DataFrame([[date_time, Diary, emotion, quote]], columns=["Date", "Diary Text", "Emotion", "Quote"])
|
71 |
+
global df
|
72 |
+
df = pd.concat([df, new_entry], ignore_index=True)
|
73 |
+
df.to_csv(csv_file, index=False)
|
74 |
+
|
75 |
+
return emotion, quote
|
76 |
+
except Exception as e:
|
77 |
+
print(f"Error encountered: {str(e)}")
|
78 |
+
return f"Error: {str(e)}", ""
|
79 |
+
|
80 |
+
# Update the Gradio interface
|
81 |
+
interface = gr.Interface(
|
82 |
+
fn=journal_interface,
|
83 |
+
inputs=gr.Textbox(lines=5, placeholder="Enter your thoughts here..."),
|
84 |
+
outputs=[
|
85 |
+
gr.Textbox(label="Detected Emotion"),
|
86 |
+
gr.Textbox(label="Generated Quote")
|
87 |
+
],
|
88 |
+
title="AI-Powered Personal Journal",
|
89 |
+
description="Enter your thoughts, and the AI will detect the emotion and generate an inspirational quote based on it.",
|
90 |
+
theme=gr.themes.Soft()
|
91 |
+
)
|
92 |
+
|
93 |
+
# Launch the Gradio app
|
94 |
+
interface.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
requests
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
gradio
|
5 |
+
pandas
|
6 |
+
tiktoken
|
7 |
+
sentencepiece
|