Spaces:
No application file
No application file
Johannes Stelzer
commited on
Commit
•
940cc9a
1
Parent(s):
7dbcdfe
new latent blending with diffusers, xl, ...
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- Dockerfile +51 -1
- LICENSE +28 -0
- __pycache__/utils.cpython-311.pyc +0 -0
- animation.gif +0 -0
- configs/v1-inference.yaml +0 -70
- configs/v2-inference-v.yaml +0 -68
- configs/v2-inference.yaml +0 -67
- configs/v2-inpainting-inference.yaml +0 -158
- configs/v2-midas-inference.yaml +0 -74
- configs/x4-upscaling.yaml +0 -76
- example1.jpg +0 -0
- example_multi_trans.py +62 -0
- example_multi_trans_json.py +75 -0
- example_single_trans.py +23 -0
- gradio_ui.py +0 -500
- latentblending/__init__.py +3 -0
- latentblending/__pycache__/diffusers_holder.cpython-311.pyc +0 -0
- latent_blending.py → latentblending/blending_engine.py +273 -320
- latentblending/diffusers_holder.py +474 -0
- latentblending/gradio_ui.py +153 -0
- utils.py → latentblending/utils.py +3 -1
- ldm/__pycache__/util.cpython-310.pyc +0 -0
- ldm/__pycache__/util.cpython-38.pyc +0 -0
- ldm/__pycache__/util.cpython-39.pyc +0 -0
- ldm/data/__init__.py +0 -0
- ldm/data/util.py +0 -24
- ldm/ldm +0 -1
- ldm/models/__pycache__/autoencoder.cpython-310.pyc +0 -0
- ldm/models/__pycache__/autoencoder.cpython-38.pyc +0 -0
- ldm/models/__pycache__/autoencoder.cpython-39.pyc +0 -0
- ldm/models/autoencoder.py +0 -219
- ldm/models/diffusion/__init__.py +0 -0
- ldm/models/diffusion/__pycache__/__init__.cpython-310.pyc +0 -0
- ldm/models/diffusion/__pycache__/__init__.cpython-38.pyc +0 -0
- ldm/models/diffusion/__pycache__/__init__.cpython-39.pyc +0 -0
- ldm/models/diffusion/__pycache__/ddim.cpython-310.pyc +0 -0
- ldm/models/diffusion/__pycache__/ddim.cpython-38.pyc +0 -0
- ldm/models/diffusion/__pycache__/ddim.cpython-39.pyc +0 -0
- ldm/models/diffusion/__pycache__/ddpm.cpython-310.pyc +0 -0
- ldm/models/diffusion/__pycache__/ddpm.cpython-38.pyc +0 -0
- ldm/models/diffusion/__pycache__/ddpm.cpython-39.pyc +0 -0
- ldm/models/diffusion/__pycache__/plms.cpython-39.pyc +0 -0
- ldm/models/diffusion/__pycache__/sampling_util.cpython-39.pyc +0 -0
- ldm/models/diffusion/ddim.py +0 -336
- ldm/models/diffusion/ddpm.py +0 -1795
- ldm/models/diffusion/dpm_solver/__init__.py +0 -1
- ldm/models/diffusion/dpm_solver/__pycache__/__init__.cpython-39.pyc +0 -0
- ldm/models/diffusion/dpm_solver/__pycache__/dpm_solver.cpython-39.pyc +0 -0
- ldm/models/diffusion/dpm_solver/__pycache__/sampler.cpython-39.pyc +0 -0
- ldm/models/diffusion/dpm_solver/dpm_solver.py +0 -1154
Dockerfile
CHANGED
@@ -1 +1,51 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM nvidia/cuda:12.1.1-cudnn8-devel-ubuntu22.04
|
2 |
+
|
3 |
+
# Configure environment
|
4 |
+
ENV DEBIAN_FRONTEND=noninteractive \
|
5 |
+
PIP_PREFER_BINARY=1 \
|
6 |
+
CUDA_HOME=/usr/local/cuda-12.1 \
|
7 |
+
TORCH_CUDA_ARCH_LIST="8.6"
|
8 |
+
|
9 |
+
# Redirect shell
|
10 |
+
RUN rm /bin/sh && ln -s /bin/bash /bin/sh
|
11 |
+
|
12 |
+
# Install prereqs
|
13 |
+
RUN apt-get update && apt-get install -y --no-install-recommends \
|
14 |
+
curl \
|
15 |
+
git-lfs \
|
16 |
+
ffmpeg \
|
17 |
+
libgl1-mesa-dev \
|
18 |
+
libglib2.0-0 \
|
19 |
+
git \
|
20 |
+
python3-dev \
|
21 |
+
python3-pip \
|
22 |
+
# Lunar Tools prereqs
|
23 |
+
libasound2-dev \
|
24 |
+
libportaudio2 \
|
25 |
+
&& apt clean && rm -rf /var/lib/apt/lists/* \
|
26 |
+
&& ln -s /usr/bin/python3 /usr/bin/python
|
27 |
+
|
28 |
+
# Set symbolic links
|
29 |
+
RUN echo "export PATH=/usr/local/cuda/bin:$PATH" >> /etc/bash.bashrc \
|
30 |
+
&& echo "export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH" >> /etc/bash. bashrc \
|
31 |
+
&& echo "export CUDA_HOME=/usr/local/cuda-12.1" >> /etc/bash.bashrc
|
32 |
+
|
33 |
+
# Install Python packages: Basic, then CUDA-compatible, then custom
|
34 |
+
RUN pip3 install \
|
35 |
+
wheel \
|
36 |
+
ninja && \
|
37 |
+
pip3 install \
|
38 |
+
torch==2.1.0 \
|
39 |
+
torchvision==0.16.0 \
|
40 |
+
xformers>=0.0.22 \
|
41 |
+
triton>=2.1.0 \
|
42 |
+
--index-url https://download.pytorch.org/whl/cu121 && \
|
43 |
+
pip3 install git+https://github.com/lunarring/latentblending \
|
44 |
+
git+https://github.com/chengzeyi/stable-fast.git@main#egg=stable-fast
|
45 |
+
|
46 |
+
# Optionally store weights in image
|
47 |
+
# RUN mkdir -p /root/.cache/torch/hub/checkpoints/ && curl -o /root/.cache/torch/hub/checkpoints//alexnet-owt-7be5be79.pth https://download.pytorch.org/models/alexnet-owt-7be5be79.pth
|
48 |
+
# RUN git lfs install && git clone https://huggingface.co/stabilityai/sdxl-turbo /sdxl-turbo
|
49 |
+
|
50 |
+
# Clone base repo because why not
|
51 |
+
RUN git clone https://github.com/lunarring/latentblending.git
|
LICENSE
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
BSD 3-Clause License
|
2 |
+
|
3 |
+
Copyright (c) 2023, Lunar Ring
|
4 |
+
|
5 |
+
Redistribution and use in source and binary forms, with or without
|
6 |
+
modification, are permitted provided that the following conditions are met:
|
7 |
+
|
8 |
+
1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
list of conditions and the following disclaimer.
|
10 |
+
|
11 |
+
2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
this list of conditions and the following disclaimer in the documentation
|
13 |
+
and/or other materials provided with the distribution.
|
14 |
+
|
15 |
+
3. Neither the name of the copyright holder nor the names of its
|
16 |
+
contributors may be used to endorse or promote products derived from
|
17 |
+
this software without specific prior written permission.
|
18 |
+
|
19 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
__pycache__/utils.cpython-311.pyc
ADDED
Binary file (12.6 kB). View file
|
|
animation.gif
ADDED
configs/v1-inference.yaml
DELETED
@@ -1,70 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
base_learning_rate: 1.0e-04
|
3 |
-
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
4 |
-
params:
|
5 |
-
linear_start: 0.00085
|
6 |
-
linear_end: 0.0120
|
7 |
-
num_timesteps_cond: 1
|
8 |
-
log_every_t: 200
|
9 |
-
timesteps: 1000
|
10 |
-
first_stage_key: "jpg"
|
11 |
-
cond_stage_key: "txt"
|
12 |
-
image_size: 64
|
13 |
-
channels: 4
|
14 |
-
cond_stage_trainable: false # Note: different from the one we trained before
|
15 |
-
conditioning_key: crossattn
|
16 |
-
monitor: val/loss_simple_ema
|
17 |
-
scale_factor: 0.18215
|
18 |
-
use_ema: False
|
19 |
-
|
20 |
-
scheduler_config: # 10000 warmup steps
|
21 |
-
target: ldm.lr_scheduler.LambdaLinearScheduler
|
22 |
-
params:
|
23 |
-
warm_up_steps: [ 10000 ]
|
24 |
-
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
25 |
-
f_start: [ 1.e-6 ]
|
26 |
-
f_max: [ 1. ]
|
27 |
-
f_min: [ 1. ]
|
28 |
-
|
29 |
-
unet_config:
|
30 |
-
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
31 |
-
params:
|
32 |
-
image_size: 32 # unused
|
33 |
-
in_channels: 4
|
34 |
-
out_channels: 4
|
35 |
-
model_channels: 320
|
36 |
-
attention_resolutions: [ 4, 2, 1 ]
|
37 |
-
num_res_blocks: 2
|
38 |
-
channel_mult: [ 1, 2, 4, 4 ]
|
39 |
-
num_heads: 8
|
40 |
-
use_spatial_transformer: True
|
41 |
-
transformer_depth: 1
|
42 |
-
context_dim: 768
|
43 |
-
use_checkpoint: True
|
44 |
-
legacy: False
|
45 |
-
|
46 |
-
first_stage_config:
|
47 |
-
target: ldm.models.autoencoder.AutoencoderKL
|
48 |
-
params:
|
49 |
-
embed_dim: 4
|
50 |
-
monitor: val/rec_loss
|
51 |
-
ddconfig:
|
52 |
-
double_z: true
|
53 |
-
z_channels: 4
|
54 |
-
resolution: 256
|
55 |
-
in_channels: 3
|
56 |
-
out_ch: 3
|
57 |
-
ch: 128
|
58 |
-
ch_mult:
|
59 |
-
- 1
|
60 |
-
- 2
|
61 |
-
- 4
|
62 |
-
- 4
|
63 |
-
num_res_blocks: 2
|
64 |
-
attn_resolutions: []
|
65 |
-
dropout: 0.0
|
66 |
-
lossconfig:
|
67 |
-
target: torch.nn.Identity
|
68 |
-
|
69 |
-
cond_stage_config:
|
70 |
-
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/v2-inference-v.yaml
DELETED
@@ -1,68 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
base_learning_rate: 1.0e-4
|
3 |
-
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
4 |
-
params:
|
5 |
-
parameterization: "v"
|
6 |
-
linear_start: 0.00085
|
7 |
-
linear_end: 0.0120
|
8 |
-
num_timesteps_cond: 1
|
9 |
-
log_every_t: 200
|
10 |
-
timesteps: 1000
|
11 |
-
first_stage_key: "jpg"
|
12 |
-
cond_stage_key: "txt"
|
13 |
-
image_size: 64
|
14 |
-
channels: 4
|
15 |
-
cond_stage_trainable: false
|
16 |
-
conditioning_key: crossattn
|
17 |
-
monitor: val/loss_simple_ema
|
18 |
-
scale_factor: 0.18215
|
19 |
-
use_ema: False # we set this to false because this is an inference only config
|
20 |
-
|
21 |
-
unet_config:
|
22 |
-
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
23 |
-
params:
|
24 |
-
use_checkpoint: True
|
25 |
-
use_fp16: True
|
26 |
-
image_size: 32 # unused
|
27 |
-
in_channels: 4
|
28 |
-
out_channels: 4
|
29 |
-
model_channels: 320
|
30 |
-
attention_resolutions: [ 4, 2, 1 ]
|
31 |
-
num_res_blocks: 2
|
32 |
-
channel_mult: [ 1, 2, 4, 4 ]
|
33 |
-
num_head_channels: 64 # need to fix for flash-attn
|
34 |
-
use_spatial_transformer: True
|
35 |
-
use_linear_in_transformer: True
|
36 |
-
transformer_depth: 1
|
37 |
-
context_dim: 1024
|
38 |
-
legacy: False
|
39 |
-
|
40 |
-
first_stage_config:
|
41 |
-
target: ldm.models.autoencoder.AutoencoderKL
|
42 |
-
params:
|
43 |
-
embed_dim: 4
|
44 |
-
monitor: val/rec_loss
|
45 |
-
ddconfig:
|
46 |
-
#attn_type: "vanilla-xformers"
|
47 |
-
double_z: true
|
48 |
-
z_channels: 4
|
49 |
-
resolution: 256
|
50 |
-
in_channels: 3
|
51 |
-
out_ch: 3
|
52 |
-
ch: 128
|
53 |
-
ch_mult:
|
54 |
-
- 1
|
55 |
-
- 2
|
56 |
-
- 4
|
57 |
-
- 4
|
58 |
-
num_res_blocks: 2
|
59 |
-
attn_resolutions: []
|
60 |
-
dropout: 0.0
|
61 |
-
lossconfig:
|
62 |
-
target: torch.nn.Identity
|
63 |
-
|
64 |
-
cond_stage_config:
|
65 |
-
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
66 |
-
params:
|
67 |
-
freeze: True
|
68 |
-
layer: "penultimate"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/v2-inference.yaml
DELETED
@@ -1,67 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
base_learning_rate: 1.0e-4
|
3 |
-
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
4 |
-
params:
|
5 |
-
linear_start: 0.00085
|
6 |
-
linear_end: 0.0120
|
7 |
-
num_timesteps_cond: 1
|
8 |
-
log_every_t: 200
|
9 |
-
timesteps: 1000
|
10 |
-
first_stage_key: "jpg"
|
11 |
-
cond_stage_key: "txt"
|
12 |
-
image_size: 64
|
13 |
-
channels: 4
|
14 |
-
cond_stage_trainable: false
|
15 |
-
conditioning_key: crossattn
|
16 |
-
monitor: val/loss_simple_ema
|
17 |
-
scale_factor: 0.18215
|
18 |
-
use_ema: False # we set this to false because this is an inference only config
|
19 |
-
|
20 |
-
unet_config:
|
21 |
-
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
22 |
-
params:
|
23 |
-
use_checkpoint: True
|
24 |
-
use_fp16: True
|
25 |
-
image_size: 32 # unused
|
26 |
-
in_channels: 4
|
27 |
-
out_channels: 4
|
28 |
-
model_channels: 320
|
29 |
-
attention_resolutions: [ 4, 2, 1 ]
|
30 |
-
num_res_blocks: 2
|
31 |
-
channel_mult: [ 1, 2, 4, 4 ]
|
32 |
-
num_head_channels: 64 # need to fix for flash-attn
|
33 |
-
use_spatial_transformer: True
|
34 |
-
use_linear_in_transformer: True
|
35 |
-
transformer_depth: 1
|
36 |
-
context_dim: 1024
|
37 |
-
legacy: False
|
38 |
-
|
39 |
-
first_stage_config:
|
40 |
-
target: ldm.models.autoencoder.AutoencoderKL
|
41 |
-
params:
|
42 |
-
embed_dim: 4
|
43 |
-
monitor: val/rec_loss
|
44 |
-
ddconfig:
|
45 |
-
#attn_type: "vanilla-xformers"
|
46 |
-
double_z: true
|
47 |
-
z_channels: 4
|
48 |
-
resolution: 256
|
49 |
-
in_channels: 3
|
50 |
-
out_ch: 3
|
51 |
-
ch: 128
|
52 |
-
ch_mult:
|
53 |
-
- 1
|
54 |
-
- 2
|
55 |
-
- 4
|
56 |
-
- 4
|
57 |
-
num_res_blocks: 2
|
58 |
-
attn_resolutions: []
|
59 |
-
dropout: 0.0
|
60 |
-
lossconfig:
|
61 |
-
target: torch.nn.Identity
|
62 |
-
|
63 |
-
cond_stage_config:
|
64 |
-
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
65 |
-
params:
|
66 |
-
freeze: True
|
67 |
-
layer: "penultimate"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/v2-inpainting-inference.yaml
DELETED
@@ -1,158 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
base_learning_rate: 5.0e-05
|
3 |
-
target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
|
4 |
-
params:
|
5 |
-
linear_start: 0.00085
|
6 |
-
linear_end: 0.0120
|
7 |
-
num_timesteps_cond: 1
|
8 |
-
log_every_t: 200
|
9 |
-
timesteps: 1000
|
10 |
-
first_stage_key: "jpg"
|
11 |
-
cond_stage_key: "txt"
|
12 |
-
image_size: 64
|
13 |
-
channels: 4
|
14 |
-
cond_stage_trainable: false
|
15 |
-
conditioning_key: hybrid
|
16 |
-
scale_factor: 0.18215
|
17 |
-
monitor: val/loss_simple_ema
|
18 |
-
finetune_keys: null
|
19 |
-
use_ema: False
|
20 |
-
|
21 |
-
unet_config:
|
22 |
-
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
23 |
-
params:
|
24 |
-
use_checkpoint: True
|
25 |
-
image_size: 32 # unused
|
26 |
-
in_channels: 9
|
27 |
-
out_channels: 4
|
28 |
-
model_channels: 320
|
29 |
-
attention_resolutions: [ 4, 2, 1 ]
|
30 |
-
num_res_blocks: 2
|
31 |
-
channel_mult: [ 1, 2, 4, 4 ]
|
32 |
-
num_head_channels: 64 # need to fix for flash-attn
|
33 |
-
use_spatial_transformer: True
|
34 |
-
use_linear_in_transformer: True
|
35 |
-
transformer_depth: 1
|
36 |
-
context_dim: 1024
|
37 |
-
legacy: False
|
38 |
-
|
39 |
-
first_stage_config:
|
40 |
-
target: ldm.models.autoencoder.AutoencoderKL
|
41 |
-
params:
|
42 |
-
embed_dim: 4
|
43 |
-
monitor: val/rec_loss
|
44 |
-
ddconfig:
|
45 |
-
#attn_type: "vanilla-xformers"
|
46 |
-
double_z: true
|
47 |
-
z_channels: 4
|
48 |
-
resolution: 256
|
49 |
-
in_channels: 3
|
50 |
-
out_ch: 3
|
51 |
-
ch: 128
|
52 |
-
ch_mult:
|
53 |
-
- 1
|
54 |
-
- 2
|
55 |
-
- 4
|
56 |
-
- 4
|
57 |
-
num_res_blocks: 2
|
58 |
-
attn_resolutions: [ ]
|
59 |
-
dropout: 0.0
|
60 |
-
lossconfig:
|
61 |
-
target: torch.nn.Identity
|
62 |
-
|
63 |
-
cond_stage_config:
|
64 |
-
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
65 |
-
params:
|
66 |
-
freeze: True
|
67 |
-
layer: "penultimate"
|
68 |
-
|
69 |
-
|
70 |
-
data:
|
71 |
-
target: ldm.data.laion.WebDataModuleFromConfig
|
72 |
-
params:
|
73 |
-
tar_base: null # for concat as in LAION-A
|
74 |
-
p_unsafe_threshold: 0.1
|
75 |
-
filter_word_list: "data/filters.yaml"
|
76 |
-
max_pwatermark: 0.45
|
77 |
-
batch_size: 8
|
78 |
-
num_workers: 6
|
79 |
-
multinode: True
|
80 |
-
min_size: 512
|
81 |
-
train:
|
82 |
-
shards:
|
83 |
-
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-0/{00000..18699}.tar -"
|
84 |
-
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-1/{00000..18699}.tar -"
|
85 |
-
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-2/{00000..18699}.tar -"
|
86 |
-
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-3/{00000..18699}.tar -"
|
87 |
-
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-4/{00000..18699}.tar -" #{00000-94333}.tar"
|
88 |
-
shuffle: 10000
|
89 |
-
image_key: jpg
|
90 |
-
image_transforms:
|
91 |
-
- target: torchvision.transforms.Resize
|
92 |
-
params:
|
93 |
-
size: 512
|
94 |
-
interpolation: 3
|
95 |
-
- target: torchvision.transforms.RandomCrop
|
96 |
-
params:
|
97 |
-
size: 512
|
98 |
-
postprocess:
|
99 |
-
target: ldm.data.laion.AddMask
|
100 |
-
params:
|
101 |
-
mode: "512train-large"
|
102 |
-
p_drop: 0.25
|
103 |
-
# NOTE use enough shards to avoid empty validation loops in workers
|
104 |
-
validation:
|
105 |
-
shards:
|
106 |
-
- "pipe:aws s3 cp s3://deep-floyd-s3/datasets/laion_cleaned-part5/{93001..94333}.tar - "
|
107 |
-
shuffle: 0
|
108 |
-
image_key: jpg
|
109 |
-
image_transforms:
|
110 |
-
- target: torchvision.transforms.Resize
|
111 |
-
params:
|
112 |
-
size: 512
|
113 |
-
interpolation: 3
|
114 |
-
- target: torchvision.transforms.CenterCrop
|
115 |
-
params:
|
116 |
-
size: 512
|
117 |
-
postprocess:
|
118 |
-
target: ldm.data.laion.AddMask
|
119 |
-
params:
|
120 |
-
mode: "512train-large"
|
121 |
-
p_drop: 0.25
|
122 |
-
|
123 |
-
lightning:
|
124 |
-
find_unused_parameters: True
|
125 |
-
modelcheckpoint:
|
126 |
-
params:
|
127 |
-
every_n_train_steps: 5000
|
128 |
-
|
129 |
-
callbacks:
|
130 |
-
metrics_over_trainsteps_checkpoint:
|
131 |
-
params:
|
132 |
-
every_n_train_steps: 10000
|
133 |
-
|
134 |
-
image_logger:
|
135 |
-
target: main.ImageLogger
|
136 |
-
params:
|
137 |
-
enable_autocast: False
|
138 |
-
disabled: False
|
139 |
-
batch_frequency: 1000
|
140 |
-
max_images: 4
|
141 |
-
increase_log_steps: False
|
142 |
-
log_first_step: False
|
143 |
-
log_images_kwargs:
|
144 |
-
use_ema_scope: False
|
145 |
-
inpaint: False
|
146 |
-
plot_progressive_rows: False
|
147 |
-
plot_diffusion_rows: False
|
148 |
-
N: 4
|
149 |
-
unconditional_guidance_scale: 5.0
|
150 |
-
unconditional_guidance_label: [""]
|
151 |
-
ddim_steps: 50 # todo check these out for depth2img,
|
152 |
-
ddim_eta: 0.0 # todo check these out for depth2img,
|
153 |
-
|
154 |
-
trainer:
|
155 |
-
benchmark: True
|
156 |
-
val_check_interval: 5000000
|
157 |
-
num_sanity_val_steps: 0
|
158 |
-
accumulate_grad_batches: 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/v2-midas-inference.yaml
DELETED
@@ -1,74 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
base_learning_rate: 5.0e-07
|
3 |
-
target: ldm.models.diffusion.ddpm.LatentDepth2ImageDiffusion
|
4 |
-
params:
|
5 |
-
linear_start: 0.00085
|
6 |
-
linear_end: 0.0120
|
7 |
-
num_timesteps_cond: 1
|
8 |
-
log_every_t: 200
|
9 |
-
timesteps: 1000
|
10 |
-
first_stage_key: "jpg"
|
11 |
-
cond_stage_key: "txt"
|
12 |
-
image_size: 64
|
13 |
-
channels: 4
|
14 |
-
cond_stage_trainable: false
|
15 |
-
conditioning_key: hybrid
|
16 |
-
scale_factor: 0.18215
|
17 |
-
monitor: val/loss_simple_ema
|
18 |
-
finetune_keys: null
|
19 |
-
use_ema: False
|
20 |
-
|
21 |
-
depth_stage_config:
|
22 |
-
target: ldm.modules.midas.api.MiDaSInference
|
23 |
-
params:
|
24 |
-
model_type: "dpt_hybrid"
|
25 |
-
|
26 |
-
unet_config:
|
27 |
-
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
28 |
-
params:
|
29 |
-
use_checkpoint: True
|
30 |
-
image_size: 32 # unused
|
31 |
-
in_channels: 5
|
32 |
-
out_channels: 4
|
33 |
-
model_channels: 320
|
34 |
-
attention_resolutions: [ 4, 2, 1 ]
|
35 |
-
num_res_blocks: 2
|
36 |
-
channel_mult: [ 1, 2, 4, 4 ]
|
37 |
-
num_head_channels: 64 # need to fix for flash-attn
|
38 |
-
use_spatial_transformer: True
|
39 |
-
use_linear_in_transformer: True
|
40 |
-
transformer_depth: 1
|
41 |
-
context_dim: 1024
|
42 |
-
legacy: False
|
43 |
-
|
44 |
-
first_stage_config:
|
45 |
-
target: ldm.models.autoencoder.AutoencoderKL
|
46 |
-
params:
|
47 |
-
embed_dim: 4
|
48 |
-
monitor: val/rec_loss
|
49 |
-
ddconfig:
|
50 |
-
#attn_type: "vanilla-xformers"
|
51 |
-
double_z: true
|
52 |
-
z_channels: 4
|
53 |
-
resolution: 256
|
54 |
-
in_channels: 3
|
55 |
-
out_ch: 3
|
56 |
-
ch: 128
|
57 |
-
ch_mult:
|
58 |
-
- 1
|
59 |
-
- 2
|
60 |
-
- 4
|
61 |
-
- 4
|
62 |
-
num_res_blocks: 2
|
63 |
-
attn_resolutions: [ ]
|
64 |
-
dropout: 0.0
|
65 |
-
lossconfig:
|
66 |
-
target: torch.nn.Identity
|
67 |
-
|
68 |
-
cond_stage_config:
|
69 |
-
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
70 |
-
params:
|
71 |
-
freeze: True
|
72 |
-
layer: "penultimate"
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/x4-upscaling.yaml
DELETED
@@ -1,76 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
base_learning_rate: 1.0e-04
|
3 |
-
target: ldm.models.diffusion.ddpm.LatentUpscaleDiffusion
|
4 |
-
params:
|
5 |
-
parameterization: "v"
|
6 |
-
low_scale_key: "lr"
|
7 |
-
linear_start: 0.0001
|
8 |
-
linear_end: 0.02
|
9 |
-
num_timesteps_cond: 1
|
10 |
-
log_every_t: 200
|
11 |
-
timesteps: 1000
|
12 |
-
first_stage_key: "jpg"
|
13 |
-
cond_stage_key: "txt"
|
14 |
-
image_size: 128
|
15 |
-
channels: 4
|
16 |
-
cond_stage_trainable: false
|
17 |
-
conditioning_key: "hybrid-adm"
|
18 |
-
monitor: val/loss_simple_ema
|
19 |
-
scale_factor: 0.08333
|
20 |
-
use_ema: False
|
21 |
-
|
22 |
-
low_scale_config:
|
23 |
-
target: ldm.modules.diffusionmodules.upscaling.ImageConcatWithNoiseAugmentation
|
24 |
-
params:
|
25 |
-
noise_schedule_config: # image space
|
26 |
-
linear_start: 0.0001
|
27 |
-
linear_end: 0.02
|
28 |
-
max_noise_level: 350
|
29 |
-
|
30 |
-
unet_config:
|
31 |
-
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
32 |
-
params:
|
33 |
-
use_checkpoint: True
|
34 |
-
num_classes: 1000 # timesteps for noise conditioning (here constant, just need one)
|
35 |
-
image_size: 128
|
36 |
-
in_channels: 7
|
37 |
-
out_channels: 4
|
38 |
-
model_channels: 256
|
39 |
-
attention_resolutions: [ 2,4,8]
|
40 |
-
num_res_blocks: 2
|
41 |
-
channel_mult: [ 1, 2, 2, 4]
|
42 |
-
disable_self_attentions: [True, True, True, False]
|
43 |
-
disable_middle_self_attn: False
|
44 |
-
num_heads: 8
|
45 |
-
use_spatial_transformer: True
|
46 |
-
transformer_depth: 1
|
47 |
-
context_dim: 1024
|
48 |
-
legacy: False
|
49 |
-
use_linear_in_transformer: True
|
50 |
-
|
51 |
-
first_stage_config:
|
52 |
-
target: ldm.models.autoencoder.AutoencoderKL
|
53 |
-
params:
|
54 |
-
embed_dim: 4
|
55 |
-
ddconfig:
|
56 |
-
# attn_type: "vanilla-xformers" this model needs efficient attention to be feasible on HR data, also the decoder seems to break in half precision (UNet is fine though)
|
57 |
-
double_z: True
|
58 |
-
z_channels: 4
|
59 |
-
resolution: 256
|
60 |
-
in_channels: 3
|
61 |
-
out_ch: 3
|
62 |
-
ch: 128
|
63 |
-
ch_mult: [ 1,2,4 ] # num_down = len(ch_mult)-1
|
64 |
-
num_res_blocks: 2
|
65 |
-
attn_resolutions: [ ]
|
66 |
-
dropout: 0.0
|
67 |
-
|
68 |
-
lossconfig:
|
69 |
-
target: torch.nn.Identity
|
70 |
-
|
71 |
-
cond_stage_config:
|
72 |
-
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
73 |
-
params:
|
74 |
-
freeze: True
|
75 |
-
layer: "penultimate"
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
example1.jpg
ADDED
example_multi_trans.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import warnings
|
3 |
+
from diffusers import AutoPipelineForText2Image
|
4 |
+
from lunar_tools import concatenate_movies
|
5 |
+
from latentblending.blending_engine import BlendingEngine
|
6 |
+
import numpy as np
|
7 |
+
torch.set_grad_enabled(False)
|
8 |
+
torch.backends.cudnn.benchmark = False
|
9 |
+
warnings.filterwarnings('ignore')
|
10 |
+
|
11 |
+
# %% First let us spawn a stable diffusion holder. Uncomment your version of choice.
|
12 |
+
pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
13 |
+
# pretrained_model_name_or_path = "stabilityai/sdxl-turbo"
|
14 |
+
|
15 |
+
pipe = AutoPipelineForText2Image.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16, variant="fp16")
|
16 |
+
pipe.to('cuda')
|
17 |
+
be = BlendingEngine(pipe, do_compile=True)
|
18 |
+
be.set_negative_prompt("blurry, pale, low-res, lofi")
|
19 |
+
# %% Let's setup the multi transition
|
20 |
+
fps = 30
|
21 |
+
duration_single_trans = 10
|
22 |
+
be.set_dimensions((1024, 1024))
|
23 |
+
nmb_prompts = 20
|
24 |
+
|
25 |
+
|
26 |
+
# Specify a list of prompts below
|
27 |
+
#%%
|
28 |
+
|
29 |
+
list_prompts = []
|
30 |
+
list_prompts.append("high resolution ultra 8K image with lake and forest")
|
31 |
+
list_prompts.append("strange and alien desolate lanscapes 8K")
|
32 |
+
list_prompts.append("ultra high res psychedelic skyscraper city landscape 8K unreal engine")
|
33 |
+
#%%
|
34 |
+
fp_movie = f'surreal_nmb{len(list_prompts)}.mp4'
|
35 |
+
# Specify the seeds
|
36 |
+
list_seeds = np.random.randint(0, np.iinfo(np.int32).max, len(list_prompts))
|
37 |
+
|
38 |
+
list_movie_parts = []
|
39 |
+
for i in range(len(list_prompts) - 1):
|
40 |
+
# For a multi transition we can save some computation time and recycle the latents
|
41 |
+
if i == 0:
|
42 |
+
be.set_prompt1(list_prompts[i])
|
43 |
+
be.set_prompt2(list_prompts[i + 1])
|
44 |
+
recycle_img1 = False
|
45 |
+
else:
|
46 |
+
be.swap_forward()
|
47 |
+
be.set_prompt2(list_prompts[i + 1])
|
48 |
+
recycle_img1 = True
|
49 |
+
|
50 |
+
fp_movie_part = f"tmp_part_{str(i).zfill(3)}.mp4"
|
51 |
+
fixed_seeds = list_seeds[i:i + 2]
|
52 |
+
# Run latent blending
|
53 |
+
be.run_transition(
|
54 |
+
recycle_img1=recycle_img1,
|
55 |
+
fixed_seeds=fixed_seeds)
|
56 |
+
|
57 |
+
# Save movie
|
58 |
+
be.write_movie_transition(fp_movie_part, duration_single_trans)
|
59 |
+
list_movie_parts.append(fp_movie_part)
|
60 |
+
|
61 |
+
# Finally, concatente the result
|
62 |
+
concatenate_movies(fp_movie, list_movie_parts)
|
example_multi_trans_json.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import warnings
|
3 |
+
from diffusers import AutoPipelineForText2Image
|
4 |
+
from latentblending.blending_engine import BlendingEngine
|
5 |
+
from lunar_tools import concatenate_movies
|
6 |
+
import numpy as np
|
7 |
+
torch.set_grad_enabled(False)
|
8 |
+
torch.backends.cudnn.benchmark = False
|
9 |
+
warnings.filterwarnings('ignore')
|
10 |
+
|
11 |
+
import json
|
12 |
+
# %% First let us spawn a stable diffusion holder. Uncomment your version of choice.
|
13 |
+
# pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
14 |
+
pretrained_model_name_or_path = "stabilityai/sdxl-turbo"
|
15 |
+
|
16 |
+
pipe = AutoPipelineForText2Image.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16, variant="fp16")
|
17 |
+
pipe.to('cuda')
|
18 |
+
be = BlendingEngine(pipe, do_compile=False)
|
19 |
+
|
20 |
+
fp_movie = f'test.mp4'
|
21 |
+
fp_json = "movie_240221_1520.json"
|
22 |
+
duration_single_trans = 10
|
23 |
+
|
24 |
+
# Load the JSON data from the file
|
25 |
+
with open(fp_json, 'r') as file:
|
26 |
+
data = json.load(file)
|
27 |
+
|
28 |
+
# Set up width, height, num_inference steps
|
29 |
+
width = data[0]["width"]
|
30 |
+
height = data[0]["height"]
|
31 |
+
num_inference_steps = data[0]["num_inference_steps"]
|
32 |
+
|
33 |
+
be.set_dimensions((width, height))
|
34 |
+
be.set_num_inference_steps(num_inference_steps)
|
35 |
+
|
36 |
+
# Initialize lists for prompts, negative prompts, and seeds
|
37 |
+
list_prompts = []
|
38 |
+
list_negative_prompts = []
|
39 |
+
list_seeds = []
|
40 |
+
|
41 |
+
# Extract prompts, negative prompts, and seeds from the data
|
42 |
+
for item in data[1:]: # Skip the first item as it contains settings
|
43 |
+
list_prompts.append(item["prompt"])
|
44 |
+
list_negative_prompts.append(item["negative_prompt"])
|
45 |
+
list_seeds.append(item["seed"])
|
46 |
+
|
47 |
+
|
48 |
+
list_movie_parts = []
|
49 |
+
for i in range(len(list_prompts) - 1):
|
50 |
+
# For a multi transition we can save some computation time and recycle the latents
|
51 |
+
if i == 0:
|
52 |
+
be.set_prompt1(list_prompts[i])
|
53 |
+
be.set_negative_prompt(list_negative_prompts[i])
|
54 |
+
be.set_prompt2(list_prompts[i + 1])
|
55 |
+
recycle_img1 = False
|
56 |
+
else:
|
57 |
+
be.swap_forward()
|
58 |
+
be.set_negative_prompt(list_negative_prompts[i+1])
|
59 |
+
be.set_prompt2(list_prompts[i + 1])
|
60 |
+
recycle_img1 = True
|
61 |
+
|
62 |
+
fp_movie_part = f"tmp_part_{str(i).zfill(3)}.mp4"
|
63 |
+
fixed_seeds = list_seeds[i:i + 2]
|
64 |
+
# Run latent blending
|
65 |
+
be.run_transition(
|
66 |
+
recycle_img1=recycle_img1,
|
67 |
+
fixed_seeds=fixed_seeds)
|
68 |
+
|
69 |
+
# Save movie
|
70 |
+
be.write_movie_transition(fp_movie_part, duration_single_trans)
|
71 |
+
list_movie_parts.append(fp_movie_part)
|
72 |
+
|
73 |
+
# Finally, concatente the result
|
74 |
+
concatenate_movies(fp_movie, list_movie_parts)
|
75 |
+
print(f"DONE! MOVIE SAVED IN {fp_movie}")
|
example_single_trans.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import warnings
|
3 |
+
from diffusers import AutoPipelineForText2Image
|
4 |
+
from latentblending.blending_engine import BlendingEngine
|
5 |
+
|
6 |
+
warnings.filterwarnings('ignore')
|
7 |
+
torch.set_grad_enabled(False)
|
8 |
+
torch.backends.cudnn.benchmark = False
|
9 |
+
|
10 |
+
# %% First let us spawn a stable diffusion holder. Uncomment your version of choice.
|
11 |
+
pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16")
|
12 |
+
pipe.to("cuda")
|
13 |
+
|
14 |
+
be = BlendingEngine(pipe)
|
15 |
+
be.set_prompt1("photo of underwater landscape, fish, und the sea, incredible detail, high resolution")
|
16 |
+
be.set_prompt2("rendering of an alien planet, strange plants, strange creatures, surreal")
|
17 |
+
be.set_negative_prompt("blurry, ugly, pale")
|
18 |
+
|
19 |
+
# Run latent blending
|
20 |
+
be.run_transition()
|
21 |
+
|
22 |
+
# Save movie
|
23 |
+
be.write_movie_transition('movie_example1.mp4', duration_transition=12)
|
gradio_ui.py
DELETED
@@ -1,500 +0,0 @@
|
|
1 |
-
# Copyright 2022 Lunar Ring. All rights reserved.
|
2 |
-
# Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
import os
|
17 |
-
import torch
|
18 |
-
torch.backends.cudnn.benchmark = False
|
19 |
-
torch.set_grad_enabled(False)
|
20 |
-
import numpy as np
|
21 |
-
import warnings
|
22 |
-
warnings.filterwarnings('ignore')
|
23 |
-
import warnings
|
24 |
-
from tqdm.auto import tqdm
|
25 |
-
from PIL import Image
|
26 |
-
from movie_util import MovieSaver, concatenate_movies
|
27 |
-
from latent_blending import LatentBlending
|
28 |
-
from stable_diffusion_holder import StableDiffusionHolder
|
29 |
-
import gradio as gr
|
30 |
-
from dotenv import find_dotenv, load_dotenv
|
31 |
-
import shutil
|
32 |
-
import uuid
|
33 |
-
from utils import get_time, add_frames_linear_interp
|
34 |
-
from huggingface_hub import hf_hub_download
|
35 |
-
|
36 |
-
|
37 |
-
class BlendingFrontend():
|
38 |
-
def __init__(
|
39 |
-
self,
|
40 |
-
sdh,
|
41 |
-
share=False):
|
42 |
-
r"""
|
43 |
-
Gradio Helper Class to collect UI data and start latent blending.
|
44 |
-
Args:
|
45 |
-
sdh:
|
46 |
-
StableDiffusionHolder
|
47 |
-
share: bool
|
48 |
-
Set true to get a shareable gradio link (e.g. for running a remote server)
|
49 |
-
"""
|
50 |
-
self.share = share
|
51 |
-
|
52 |
-
# UI Defaults
|
53 |
-
self.num_inference_steps = 30
|
54 |
-
self.depth_strength = 0.25
|
55 |
-
self.seed1 = 420
|
56 |
-
self.seed2 = 420
|
57 |
-
self.prompt1 = ""
|
58 |
-
self.prompt2 = ""
|
59 |
-
self.negative_prompt = ""
|
60 |
-
self.fps = 30
|
61 |
-
self.duration_video = 8
|
62 |
-
self.t_compute_max_allowed = 10
|
63 |
-
|
64 |
-
self.lb = LatentBlending(sdh)
|
65 |
-
self.lb.sdh.num_inference_steps = self.num_inference_steps
|
66 |
-
self.init_parameters_from_lb()
|
67 |
-
self.init_save_dir()
|
68 |
-
|
69 |
-
# Vars
|
70 |
-
self.list_fp_imgs_current = []
|
71 |
-
self.recycle_img1 = False
|
72 |
-
self.recycle_img2 = False
|
73 |
-
self.list_all_segments = []
|
74 |
-
self.dp_session = ""
|
75 |
-
self.user_id = None
|
76 |
-
|
77 |
-
def init_parameters_from_lb(self):
|
78 |
-
r"""
|
79 |
-
Automatically init parameters from latentblending instance
|
80 |
-
"""
|
81 |
-
self.height = self.lb.sdh.height
|
82 |
-
self.width = self.lb.sdh.width
|
83 |
-
self.guidance_scale = self.lb.guidance_scale
|
84 |
-
self.guidance_scale_mid_damper = self.lb.guidance_scale_mid_damper
|
85 |
-
self.mid_compression_scaler = self.lb.mid_compression_scaler
|
86 |
-
self.branch1_crossfeed_power = self.lb.branch1_crossfeed_power
|
87 |
-
self.branch1_crossfeed_range = self.lb.branch1_crossfeed_range
|
88 |
-
self.branch1_crossfeed_decay = self.lb.branch1_crossfeed_decay
|
89 |
-
self.parental_crossfeed_power = self.lb.parental_crossfeed_power
|
90 |
-
self.parental_crossfeed_range = self.lb.parental_crossfeed_range
|
91 |
-
self.parental_crossfeed_power_decay = self.lb.parental_crossfeed_power_decay
|
92 |
-
|
93 |
-
def init_save_dir(self):
|
94 |
-
r"""
|
95 |
-
Initializes the directory where stuff is being saved.
|
96 |
-
You can specify this directory in a ".env" file in your latentblending root, setting
|
97 |
-
DIR_OUT='/path/to/saving'
|
98 |
-
"""
|
99 |
-
load_dotenv(find_dotenv(), verbose=False)
|
100 |
-
self.dp_out = os.getenv("DIR_OUT")
|
101 |
-
if self.dp_out is None:
|
102 |
-
self.dp_out = ""
|
103 |
-
self.dp_imgs = os.path.join(self.dp_out, "imgs")
|
104 |
-
os.makedirs(self.dp_imgs, exist_ok=True)
|
105 |
-
self.dp_movies = os.path.join(self.dp_out, "movies")
|
106 |
-
os.makedirs(self.dp_movies, exist_ok=True)
|
107 |
-
self.save_empty_image()
|
108 |
-
|
109 |
-
def save_empty_image(self):
|
110 |
-
r"""
|
111 |
-
Saves an empty/black dummy image.
|
112 |
-
"""
|
113 |
-
self.fp_img_empty = os.path.join(self.dp_imgs, 'empty.jpg')
|
114 |
-
Image.fromarray(np.zeros((self.height, self.width, 3), dtype=np.uint8)).save(self.fp_img_empty, quality=5)
|
115 |
-
|
116 |
-
def randomize_seed1(self):
|
117 |
-
r"""
|
118 |
-
Randomizes the first seed
|
119 |
-
"""
|
120 |
-
seed = np.random.randint(0, 10000000)
|
121 |
-
self.seed1 = int(seed)
|
122 |
-
print(f"randomize_seed1: new seed = {self.seed1}")
|
123 |
-
return seed
|
124 |
-
|
125 |
-
def randomize_seed2(self):
|
126 |
-
r"""
|
127 |
-
Randomizes the second seed
|
128 |
-
"""
|
129 |
-
seed = np.random.randint(0, 10000000)
|
130 |
-
self.seed2 = int(seed)
|
131 |
-
print(f"randomize_seed2: new seed = {self.seed2}")
|
132 |
-
return seed
|
133 |
-
|
134 |
-
def setup_lb(self, list_ui_vals):
|
135 |
-
r"""
|
136 |
-
Sets all parameters from the UI. Since gradio does not support to pass dictionaries,
|
137 |
-
we have to instead pass keys (list_ui_keys, global) and values (list_ui_vals)
|
138 |
-
"""
|
139 |
-
# Collect latent blending variables
|
140 |
-
self.lb.set_width(list_ui_vals[list_ui_keys.index('width')])
|
141 |
-
self.lb.set_height(list_ui_vals[list_ui_keys.index('height')])
|
142 |
-
self.lb.set_prompt1(list_ui_vals[list_ui_keys.index('prompt1')])
|
143 |
-
self.lb.set_prompt2(list_ui_vals[list_ui_keys.index('prompt2')])
|
144 |
-
self.lb.set_negative_prompt(list_ui_vals[list_ui_keys.index('negative_prompt')])
|
145 |
-
self.lb.guidance_scale = list_ui_vals[list_ui_keys.index('guidance_scale')]
|
146 |
-
self.lb.guidance_scale_mid_damper = list_ui_vals[list_ui_keys.index('guidance_scale_mid_damper')]
|
147 |
-
self.t_compute_max_allowed = list_ui_vals[list_ui_keys.index('duration_compute')]
|
148 |
-
self.lb.num_inference_steps = list_ui_vals[list_ui_keys.index('num_inference_steps')]
|
149 |
-
self.lb.sdh.num_inference_steps = list_ui_vals[list_ui_keys.index('num_inference_steps')]
|
150 |
-
self.duration_video = list_ui_vals[list_ui_keys.index('duration_video')]
|
151 |
-
self.lb.seed1 = list_ui_vals[list_ui_keys.index('seed1')]
|
152 |
-
self.lb.seed2 = list_ui_vals[list_ui_keys.index('seed2')]
|
153 |
-
self.lb.branch1_crossfeed_power = list_ui_vals[list_ui_keys.index('branch1_crossfeed_power')]
|
154 |
-
self.lb.branch1_crossfeed_range = list_ui_vals[list_ui_keys.index('branch1_crossfeed_range')]
|
155 |
-
self.lb.branch1_crossfeed_decay = list_ui_vals[list_ui_keys.index('branch1_crossfeed_decay')]
|
156 |
-
self.lb.parental_crossfeed_power = list_ui_vals[list_ui_keys.index('parental_crossfeed_power')]
|
157 |
-
self.lb.parental_crossfeed_range = list_ui_vals[list_ui_keys.index('parental_crossfeed_range')]
|
158 |
-
self.lb.parental_crossfeed_power_decay = list_ui_vals[list_ui_keys.index('parental_crossfeed_power_decay')]
|
159 |
-
self.num_inference_steps = list_ui_vals[list_ui_keys.index('num_inference_steps')]
|
160 |
-
self.depth_strength = list_ui_vals[list_ui_keys.index('depth_strength')]
|
161 |
-
|
162 |
-
if len(list_ui_vals[list_ui_keys.index('user_id')]) > 1:
|
163 |
-
self.user_id = list_ui_vals[list_ui_keys.index('user_id')]
|
164 |
-
else:
|
165 |
-
# generate new user id
|
166 |
-
self.user_id = uuid.uuid4().hex
|
167 |
-
print(f"made new user_id: {self.user_id} at {get_time('second')}")
|
168 |
-
|
169 |
-
def save_latents(self, fp_latents, list_latents):
|
170 |
-
r"""
|
171 |
-
Saves a latent trajectory on disk, in npy format.
|
172 |
-
"""
|
173 |
-
list_latents_cpu = [l.cpu().numpy() for l in list_latents]
|
174 |
-
np.save(fp_latents, list_latents_cpu)
|
175 |
-
|
176 |
-
def load_latents(self, fp_latents):
|
177 |
-
r"""
|
178 |
-
Loads a latent trajectory from disk, converts to torch tensor.
|
179 |
-
"""
|
180 |
-
list_latents_cpu = np.load(fp_latents)
|
181 |
-
list_latents = [torch.from_numpy(l).to(self.lb.device) for l in list_latents_cpu]
|
182 |
-
return list_latents
|
183 |
-
|
184 |
-
def compute_img1(self, *args):
|
185 |
-
r"""
|
186 |
-
Computes the first transition image and returns it for display.
|
187 |
-
Sets all other transition images and last image to empty (as they are obsolete with this operation)
|
188 |
-
"""
|
189 |
-
list_ui_vals = args
|
190 |
-
self.setup_lb(list_ui_vals)
|
191 |
-
fp_img1 = os.path.join(self.dp_imgs, f"img1_{self.user_id}")
|
192 |
-
img1 = Image.fromarray(self.lb.compute_latents1(return_image=True))
|
193 |
-
img1.save(fp_img1 + ".jpg")
|
194 |
-
self.save_latents(fp_img1 + ".npy", self.lb.tree_latents[0])
|
195 |
-
self.recycle_img1 = True
|
196 |
-
self.recycle_img2 = False
|
197 |
-
return [fp_img1 + ".jpg", self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, self.user_id]
|
198 |
-
|
199 |
-
def compute_img2(self, *args):
|
200 |
-
r"""
|
201 |
-
Computes the last transition image and returns it for display.
|
202 |
-
Sets all other transition images to empty (as they are obsolete with this operation)
|
203 |
-
"""
|
204 |
-
if not os.path.isfile(os.path.join(self.dp_imgs, f"img1_{self.user_id}.jpg")): # don't do anything
|
205 |
-
return [self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, self.user_id]
|
206 |
-
list_ui_vals = args
|
207 |
-
self.setup_lb(list_ui_vals)
|
208 |
-
|
209 |
-
self.lb.tree_latents[0] = self.load_latents(os.path.join(self.dp_imgs, f"img1_{self.user_id}.npy"))
|
210 |
-
fp_img2 = os.path.join(self.dp_imgs, f"img2_{self.user_id}")
|
211 |
-
img2 = Image.fromarray(self.lb.compute_latents2(return_image=True))
|
212 |
-
img2.save(fp_img2 + '.jpg')
|
213 |
-
self.save_latents(fp_img2 + ".npy", self.lb.tree_latents[-1])
|
214 |
-
self.recycle_img2 = True
|
215 |
-
# fixme save seeds. change filenames?
|
216 |
-
return [self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, fp_img2 + ".jpg", self.user_id]
|
217 |
-
|
218 |
-
def compute_transition(self, *args):
|
219 |
-
r"""
|
220 |
-
Computes transition images and movie.
|
221 |
-
"""
|
222 |
-
list_ui_vals = args
|
223 |
-
self.setup_lb(list_ui_vals)
|
224 |
-
print("STARTING TRANSITION...")
|
225 |
-
fixed_seeds = [self.seed1, self.seed2]
|
226 |
-
# Inject loaded latents (other user interference)
|
227 |
-
self.lb.tree_latents[0] = self.load_latents(os.path.join(self.dp_imgs, f"img1_{self.user_id}.npy"))
|
228 |
-
self.lb.tree_latents[-1] = self.load_latents(os.path.join(self.dp_imgs, f"img2_{self.user_id}.npy"))
|
229 |
-
imgs_transition = self.lb.run_transition(
|
230 |
-
recycle_img1=self.recycle_img1,
|
231 |
-
recycle_img2=self.recycle_img2,
|
232 |
-
num_inference_steps=self.num_inference_steps,
|
233 |
-
depth_strength=self.depth_strength,
|
234 |
-
t_compute_max_allowed=self.t_compute_max_allowed,
|
235 |
-
fixed_seeds=fixed_seeds)
|
236 |
-
print(f"Latent Blending pass finished ({get_time('second')}). Resulted in {len(imgs_transition)} images")
|
237 |
-
|
238 |
-
# Subselect three preview images
|
239 |
-
idx_img_prev = np.round(np.linspace(0, len(imgs_transition) - 1, 5)[1:-1]).astype(np.int32)
|
240 |
-
|
241 |
-
list_imgs_preview = []
|
242 |
-
for j in idx_img_prev:
|
243 |
-
list_imgs_preview.append(Image.fromarray(imgs_transition[j]))
|
244 |
-
|
245 |
-
# Save the preview imgs as jpgs on disk so we are not sending umcompressed data around
|
246 |
-
current_timestamp = get_time('second')
|
247 |
-
self.list_fp_imgs_current = []
|
248 |
-
for i in range(len(list_imgs_preview)):
|
249 |
-
fp_img = os.path.join(self.dp_imgs, f"img_preview_{i}_{current_timestamp}.jpg")
|
250 |
-
list_imgs_preview[i].save(fp_img)
|
251 |
-
self.list_fp_imgs_current.append(fp_img)
|
252 |
-
# Insert cheap frames for the movie
|
253 |
-
imgs_transition_ext = add_frames_linear_interp(imgs_transition, self.duration_video, self.fps)
|
254 |
-
|
255 |
-
# Save as movie
|
256 |
-
self.fp_movie = self.get_fp_video_last()
|
257 |
-
if os.path.isfile(self.fp_movie):
|
258 |
-
os.remove(self.fp_movie)
|
259 |
-
ms = MovieSaver(self.fp_movie, fps=self.fps)
|
260 |
-
for img in tqdm(imgs_transition_ext):
|
261 |
-
ms.write_frame(img)
|
262 |
-
ms.finalize()
|
263 |
-
print("DONE SAVING MOVIE! SENDING BACK...")
|
264 |
-
|
265 |
-
# Assemble Output, updating the preview images and le movie
|
266 |
-
list_return = self.list_fp_imgs_current + [self.fp_movie]
|
267 |
-
return list_return
|
268 |
-
|
269 |
-
def stack_forward(self, prompt2, seed2):
|
270 |
-
r"""
|
271 |
-
Allows to generate multi-segment movies. Sets last image -> first image with all
|
272 |
-
relevant parameters.
|
273 |
-
"""
|
274 |
-
# Save preview images, prompts and seeds into dictionary for stacking
|
275 |
-
if len(self.list_all_segments) == 0:
|
276 |
-
timestamp_session = get_time('second')
|
277 |
-
self.dp_session = os.path.join(self.dp_out, f"session_{timestamp_session}")
|
278 |
-
os.makedirs(self.dp_session)
|
279 |
-
|
280 |
-
idx_segment = len(self.list_all_segments)
|
281 |
-
dp_segment = os.path.join(self.dp_session, f"segment_{str(idx_segment).zfill(3)}")
|
282 |
-
|
283 |
-
self.list_all_segments.append(dp_segment)
|
284 |
-
self.lb.write_imgs_transition(dp_segment)
|
285 |
-
|
286 |
-
fp_movie_last = self.get_fp_video_last()
|
287 |
-
fp_movie_next = self.get_fp_video_next()
|
288 |
-
|
289 |
-
shutil.copyfile(fp_movie_last, fp_movie_next)
|
290 |
-
|
291 |
-
self.lb.tree_latents[0] = self.load_latents(os.path.join(self.dp_imgs, f"img1_{self.user_id}.npy"))
|
292 |
-
self.lb.tree_latents[-1] = self.load_latents(os.path.join(self.dp_imgs, f"img2_{self.user_id}.npy"))
|
293 |
-
self.lb.swap_forward()
|
294 |
-
|
295 |
-
shutil.copyfile(os.path.join(self.dp_imgs, f"img2_{self.user_id}.npy"), os.path.join(self.dp_imgs, f"img1_{self.user_id}.npy"))
|
296 |
-
fp_multi = self.multi_concat()
|
297 |
-
list_out = [fp_multi]
|
298 |
-
|
299 |
-
list_out.extend([os.path.join(self.dp_imgs, f"img2_{self.user_id}.jpg")])
|
300 |
-
list_out.extend([self.fp_img_empty] * 4)
|
301 |
-
list_out.append(gr.update(interactive=False, value=prompt2))
|
302 |
-
list_out.append(gr.update(interactive=False, value=seed2))
|
303 |
-
list_out.append("")
|
304 |
-
list_out.append(np.random.randint(0, 10000000))
|
305 |
-
print(f"stack_forward: fp_multi {fp_multi}")
|
306 |
-
return list_out
|
307 |
-
|
308 |
-
def multi_concat(self):
|
309 |
-
r"""
|
310 |
-
Concatentates all stacked segments into one long movie.
|
311 |
-
"""
|
312 |
-
list_fp_movies = self.get_fp_video_all()
|
313 |
-
# Concatenate movies and save
|
314 |
-
fp_final = os.path.join(self.dp_session, f"concat_{self.user_id}.mp4")
|
315 |
-
concatenate_movies(fp_final, list_fp_movies)
|
316 |
-
return fp_final
|
317 |
-
|
318 |
-
def get_fp_video_all(self):
|
319 |
-
r"""
|
320 |
-
Collects all stacked movie segments.
|
321 |
-
"""
|
322 |
-
list_all = os.listdir(self.dp_movies)
|
323 |
-
str_beg = f"movie_{self.user_id}_"
|
324 |
-
list_user = [l for l in list_all if str_beg in l]
|
325 |
-
list_user.sort()
|
326 |
-
list_user = [os.path.join(self.dp_movies, l) for l in list_user]
|
327 |
-
return list_user
|
328 |
-
|
329 |
-
def get_fp_video_next(self):
|
330 |
-
r"""
|
331 |
-
Gets the filepath of the next movie segment.
|
332 |
-
"""
|
333 |
-
list_videos = self.get_fp_video_all()
|
334 |
-
if len(list_videos) == 0:
|
335 |
-
idx_next = 0
|
336 |
-
else:
|
337 |
-
idx_next = len(list_videos)
|
338 |
-
fp_video_next = os.path.join(self.dp_movies, f"movie_{self.user_id}_{str(idx_next).zfill(3)}.mp4")
|
339 |
-
return fp_video_next
|
340 |
-
|
341 |
-
def get_fp_video_last(self):
|
342 |
-
r"""
|
343 |
-
Gets the current video that was saved.
|
344 |
-
"""
|
345 |
-
fp_video_last = os.path.join(self.dp_movies, f"last_{self.user_id}.mp4")
|
346 |
-
return fp_video_last
|
347 |
-
|
348 |
-
|
349 |
-
if __name__ == "__main__":
|
350 |
-
fp_ckpt = hf_hub_download(repo_id="stabilityai/stable-diffusion-2-1-base", filename="v2-1_512-ema-pruned.ckpt")
|
351 |
-
# fp_ckpt = hf_hub_download(repo_id="stabilityai/stable-diffusion-2-1", filename="v2-1_768-ema-pruned.ckpt")
|
352 |
-
bf = BlendingFrontend(StableDiffusionHolder(fp_ckpt))
|
353 |
-
# self = BlendingFrontend(None)
|
354 |
-
|
355 |
-
with gr.Blocks() as demo:
|
356 |
-
gr.HTML("""<h1>Latent Blending</h1>
|
357 |
-
<p>Create butter-smooth transitions between prompts, powered by stable diffusion</p>
|
358 |
-
<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
|
359 |
-
<br/>
|
360 |
-
<a href="https://huggingface.co/spaces/lunarring/latentblending?duplicate=true">
|
361 |
-
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
|
362 |
-
</p>""")
|
363 |
-
|
364 |
-
with gr.Row():
|
365 |
-
prompt1 = gr.Textbox(label="prompt 1")
|
366 |
-
prompt2 = gr.Textbox(label="prompt 2")
|
367 |
-
|
368 |
-
with gr.Row():
|
369 |
-
duration_compute = gr.Slider(10, 25, bf.t_compute_max_allowed, step=1, label='waiting time', interactive=True)
|
370 |
-
duration_video = gr.Slider(1, 100, bf.duration_video, step=0.1, label='video duration', interactive=True)
|
371 |
-
height = gr.Slider(256, 1024, bf.height, step=128, label='height', interactive=True)
|
372 |
-
width = gr.Slider(256, 1024, bf.width, step=128, label='width', interactive=True)
|
373 |
-
|
374 |
-
with gr.Accordion("Advanced Settings (click to expand)", open=False):
|
375 |
-
|
376 |
-
with gr.Accordion("Diffusion settings", open=True):
|
377 |
-
with gr.Row():
|
378 |
-
num_inference_steps = gr.Slider(5, 100, bf.num_inference_steps, step=1, label='num_inference_steps', interactive=True)
|
379 |
-
guidance_scale = gr.Slider(1, 25, bf.guidance_scale, step=0.1, label='guidance_scale', interactive=True)
|
380 |
-
negative_prompt = gr.Textbox(label="negative prompt")
|
381 |
-
|
382 |
-
with gr.Accordion("Seed control: adjust seeds for first and last images", open=True):
|
383 |
-
with gr.Row():
|
384 |
-
b_newseed1 = gr.Button("randomize seed 1", variant='secondary')
|
385 |
-
seed1 = gr.Number(bf.seed1, label="seed 1", interactive=True)
|
386 |
-
seed2 = gr.Number(bf.seed2, label="seed 2", interactive=True)
|
387 |
-
b_newseed2 = gr.Button("randomize seed 2", variant='secondary')
|
388 |
-
|
389 |
-
with gr.Accordion("Last image crossfeeding.", open=True):
|
390 |
-
with gr.Row():
|
391 |
-
branch1_crossfeed_power = gr.Slider(0.0, 1.0, bf.branch1_crossfeed_power, step=0.01, label='branch1 crossfeed power', interactive=True)
|
392 |
-
branch1_crossfeed_range = gr.Slider(0.0, 1.0, bf.branch1_crossfeed_range, step=0.01, label='branch1 crossfeed range', interactive=True)
|
393 |
-
branch1_crossfeed_decay = gr.Slider(0.0, 1.0, bf.branch1_crossfeed_decay, step=0.01, label='branch1 crossfeed decay', interactive=True)
|
394 |
-
|
395 |
-
with gr.Accordion("Transition settings", open=True):
|
396 |
-
with gr.Row():
|
397 |
-
parental_crossfeed_power = gr.Slider(0.0, 1.0, bf.parental_crossfeed_power, step=0.01, label='parental crossfeed power', interactive=True)
|
398 |
-
parental_crossfeed_range = gr.Slider(0.0, 1.0, bf.parental_crossfeed_range, step=0.01, label='parental crossfeed range', interactive=True)
|
399 |
-
parental_crossfeed_power_decay = gr.Slider(0.0, 1.0, bf.parental_crossfeed_power_decay, step=0.01, label='parental crossfeed decay', interactive=True)
|
400 |
-
with gr.Row():
|
401 |
-
depth_strength = gr.Slider(0.01, 0.99, bf.depth_strength, step=0.01, label='depth_strength', interactive=True)
|
402 |
-
guidance_scale_mid_damper = gr.Slider(0.01, 2.0, bf.guidance_scale_mid_damper, step=0.01, label='guidance_scale_mid_damper', interactive=True)
|
403 |
-
|
404 |
-
with gr.Row():
|
405 |
-
b_compute1 = gr.Button('step1: compute first image', variant='primary')
|
406 |
-
b_compute2 = gr.Button('step2: compute last image', variant='primary')
|
407 |
-
b_compute_transition = gr.Button('step3: compute transition', variant='primary')
|
408 |
-
|
409 |
-
with gr.Row():
|
410 |
-
img1 = gr.Image(label="1/5")
|
411 |
-
img2 = gr.Image(label="2/5", show_progress=False)
|
412 |
-
img3 = gr.Image(label="3/5", show_progress=False)
|
413 |
-
img4 = gr.Image(label="4/5", show_progress=False)
|
414 |
-
img5 = gr.Image(label="5/5")
|
415 |
-
|
416 |
-
with gr.Row():
|
417 |
-
vid_single = gr.Video(label="current single trans")
|
418 |
-
vid_multi = gr.Video(label="concatented multi trans")
|
419 |
-
|
420 |
-
with gr.Row():
|
421 |
-
b_stackforward = gr.Button('append last movie segment (left) to multi movie (right)', variant='primary')
|
422 |
-
|
423 |
-
with gr.Row():
|
424 |
-
gr.Markdown(
|
425 |
-
"""
|
426 |
-
# Parameters
|
427 |
-
## Main
|
428 |
-
- waiting time: set your waiting time for the transition. high values = better quality
|
429 |
-
- video duration: seconds per segment
|
430 |
-
- height/width: in pixels
|
431 |
-
|
432 |
-
## Diffusion settings
|
433 |
-
- num_inference_steps: number of diffusion steps
|
434 |
-
- guidance_scale: latent blending seems to prefer lower values here
|
435 |
-
- negative prompt: enter negative prompt here, applied for all images
|
436 |
-
|
437 |
-
## Last image crossfeeding
|
438 |
-
- branch1_crossfeed_power: Controls the level of cross-feeding between the first and last image branch. For preserving structures.
|
439 |
-
- branch1_crossfeed_range: Sets the duration of active crossfeed during development. High values enforce strong structural similarity.
|
440 |
-
- branch1_crossfeed_decay: Sets decay for branch1_crossfeed_power. Lower values make the decay stronger across the range.
|
441 |
-
|
442 |
-
## Transition settings
|
443 |
-
- parental_crossfeed_power: Similar to branch1_crossfeed_power, however applied for the images withinin the transition.
|
444 |
-
- parental_crossfeed_range: Similar to branch1_crossfeed_range, however applied for the images withinin the transition.
|
445 |
-
- parental_crossfeed_power_decay: Similar to branch1_crossfeed_decay, however applied for the images withinin the transition.
|
446 |
-
- depth_strength: Determines when the blending process will begin in terms of diffusion steps. Low values more inventive but can cause motion.
|
447 |
-
- guidance_scale_mid_damper: Decreases the guidance scale in the middle of a transition.
|
448 |
-
""")
|
449 |
-
|
450 |
-
with gr.Row():
|
451 |
-
user_id = gr.Textbox(label="user id", interactive=False)
|
452 |
-
|
453 |
-
# Collect all UI elemts in list to easily pass as inputs in gradio
|
454 |
-
dict_ui_elem = {}
|
455 |
-
dict_ui_elem["prompt1"] = prompt1
|
456 |
-
dict_ui_elem["negative_prompt"] = negative_prompt
|
457 |
-
dict_ui_elem["prompt2"] = prompt2
|
458 |
-
|
459 |
-
dict_ui_elem["duration_compute"] = duration_compute
|
460 |
-
dict_ui_elem["duration_video"] = duration_video
|
461 |
-
dict_ui_elem["height"] = height
|
462 |
-
dict_ui_elem["width"] = width
|
463 |
-
|
464 |
-
dict_ui_elem["depth_strength"] = depth_strength
|
465 |
-
dict_ui_elem["branch1_crossfeed_power"] = branch1_crossfeed_power
|
466 |
-
dict_ui_elem["branch1_crossfeed_range"] = branch1_crossfeed_range
|
467 |
-
dict_ui_elem["branch1_crossfeed_decay"] = branch1_crossfeed_decay
|
468 |
-
|
469 |
-
dict_ui_elem["num_inference_steps"] = num_inference_steps
|
470 |
-
dict_ui_elem["guidance_scale"] = guidance_scale
|
471 |
-
dict_ui_elem["guidance_scale_mid_damper"] = guidance_scale_mid_damper
|
472 |
-
dict_ui_elem["seed1"] = seed1
|
473 |
-
dict_ui_elem["seed2"] = seed2
|
474 |
-
|
475 |
-
dict_ui_elem["parental_crossfeed_range"] = parental_crossfeed_range
|
476 |
-
dict_ui_elem["parental_crossfeed_power"] = parental_crossfeed_power
|
477 |
-
dict_ui_elem["parental_crossfeed_power_decay"] = parental_crossfeed_power_decay
|
478 |
-
dict_ui_elem["user_id"] = user_id
|
479 |
-
|
480 |
-
# Convert to list, as gradio doesn't seem to accept dicts
|
481 |
-
list_ui_vals = []
|
482 |
-
list_ui_keys = []
|
483 |
-
for k in dict_ui_elem.keys():
|
484 |
-
list_ui_vals.append(dict_ui_elem[k])
|
485 |
-
list_ui_keys.append(k)
|
486 |
-
bf.list_ui_keys = list_ui_keys
|
487 |
-
|
488 |
-
b_newseed1.click(bf.randomize_seed1, outputs=seed1)
|
489 |
-
b_newseed2.click(bf.randomize_seed2, outputs=seed2)
|
490 |
-
b_compute1.click(bf.compute_img1, inputs=list_ui_vals, outputs=[img1, img2, img3, img4, img5, user_id])
|
491 |
-
b_compute2.click(bf.compute_img2, inputs=list_ui_vals, outputs=[img2, img3, img4, img5, user_id])
|
492 |
-
b_compute_transition.click(bf.compute_transition,
|
493 |
-
inputs=list_ui_vals,
|
494 |
-
outputs=[img2, img3, img4, vid_single])
|
495 |
-
|
496 |
-
b_stackforward.click(bf.stack_forward,
|
497 |
-
inputs=[prompt2, seed2],
|
498 |
-
outputs=[vid_multi, img1, img2, img3, img4, img5, prompt1, seed1, prompt2])
|
499 |
-
|
500 |
-
demo.launch(share=bf.share, inbrowser=True, inline=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
latentblending/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .blending_engine import BlendingEngine
|
2 |
+
from .diffusers_holder import DiffusersHolder
|
3 |
+
from .utils import interpolate_spherical, add_frames_linear_interp, interpolate_linear, get_spacing, get_time, yml_load, yml_save
|
latentblending/__pycache__/diffusers_holder.cpython-311.pyc
ADDED
Binary file (18.2 kB). View file
|
|
latent_blending.py → latentblending/blending_engine.py
RENAMED
@@ -1,52 +1,33 @@
|
|
1 |
-
# Copyright 2022 Lunar Ring. All rights reserved.
|
2 |
-
# Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
import os
|
17 |
import torch
|
18 |
-
torch.backends.cudnn.benchmark = False
|
19 |
-
torch.set_grad_enabled(False)
|
20 |
import numpy as np
|
21 |
import warnings
|
22 |
-
warnings.filterwarnings('ignore')
|
23 |
import time
|
24 |
-
import warnings
|
25 |
from tqdm.auto import tqdm
|
26 |
from PIL import Image
|
27 |
-
from movie_util import MovieSaver
|
28 |
from typing import List, Optional
|
29 |
-
from ldm.models.diffusion.ddpm import LatentUpscaleDiffusion, LatentInpaintDiffusion
|
30 |
import lpips
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
|
34 |
-
class
|
35 |
def __init__(
|
36 |
self,
|
37 |
-
|
38 |
-
|
39 |
guidance_scale_mid_damper: float = 0.5,
|
40 |
mid_compression_scaler: float = 1.2):
|
41 |
r"""
|
42 |
Initializes the latent blending class.
|
43 |
Args:
|
44 |
-
|
45 |
-
|
46 |
-
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
47 |
-
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
48 |
-
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
49 |
-
usually at the expense of lower image quality.
|
50 |
guidance_scale_mid_damper: float = 0.5
|
51 |
Reduces the guidance scale towards the middle of the transition.
|
52 |
A value of 0.5 would decrease the guidance_scale towards the middle linearly by 0.5.
|
@@ -59,10 +40,11 @@ class LatentBlending():
|
|
59 |
and guidance_scale_mid_damper <= 1.0, \
|
60 |
f"guidance_scale_mid_damper neees to be in interval (0,1], you provided {guidance_scale_mid_damper}"
|
61 |
|
62 |
-
|
63 |
-
self.
|
64 |
-
self.
|
65 |
-
self.
|
|
|
66 |
self.guidance_scale_mid_damper = guidance_scale_mid_damper
|
67 |
self.mid_compression_scaler = mid_compression_scaler
|
68 |
self.seed1 = 0
|
@@ -71,7 +53,6 @@ class LatentBlending():
|
|
71 |
# Initialize vars
|
72 |
self.prompt1 = ""
|
73 |
self.prompt2 = ""
|
74 |
-
self.negative_prompt = ""
|
75 |
|
76 |
self.tree_latents = [None, None]
|
77 |
self.tree_fracts = None
|
@@ -79,61 +60,97 @@ class LatentBlending():
|
|
79 |
self.tree_status = None
|
80 |
self.tree_final_imgs = []
|
81 |
|
82 |
-
self.list_nmb_branches_prev = []
|
83 |
-
self.list_injection_idx_prev = []
|
84 |
self.text_embedding1 = None
|
85 |
self.text_embedding2 = None
|
86 |
self.image1_lowres = None
|
87 |
self.image2_lowres = None
|
88 |
self.negative_prompt = None
|
89 |
-
|
90 |
-
self.
|
91 |
-
self.list_injection_idx = None
|
92 |
-
self.list_nmb_branches = None
|
93 |
-
|
94 |
-
# Mixing parameters
|
95 |
-
self.branch1_crossfeed_power = 0.1
|
96 |
-
self.branch1_crossfeed_range = 0.6
|
97 |
-
self.branch1_crossfeed_decay = 0.8
|
98 |
-
|
99 |
-
self.parental_crossfeed_power = 0.1
|
100 |
-
self.parental_crossfeed_range = 0.8
|
101 |
-
self.parental_crossfeed_power_decay = 0.8
|
102 |
-
|
103 |
-
self.set_guidance_scale(guidance_scale)
|
104 |
-
self.init_mode()
|
105 |
self.multi_transition_img_first = None
|
106 |
self.multi_transition_img_last = None
|
107 |
-
self.
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
def
|
112 |
r"""
|
113 |
-
|
|
|
|
|
|
|
|
|
114 |
"""
|
115 |
-
if
|
116 |
-
self.
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
else:
|
122 |
-
self.mode = 'standard'
|
123 |
|
124 |
-
def set_guidance_scale(self, guidance_scale):
|
125 |
r"""
|
126 |
sets the guidance scale.
|
127 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
self.guidance_scale_base = guidance_scale
|
129 |
self.guidance_scale = guidance_scale
|
130 |
-
self.
|
131 |
|
132 |
def set_negative_prompt(self, negative_prompt):
|
133 |
r"""Set the negative prompt. Currenty only one negative prompt is supported
|
134 |
"""
|
135 |
self.negative_prompt = negative_prompt
|
136 |
-
self.
|
137 |
|
138 |
def set_guidance_mid_dampening(self, fract_mixing):
|
139 |
r"""
|
@@ -144,9 +161,9 @@ class LatentBlending():
|
|
144 |
max_guidance_reduction = self.guidance_scale_base * (1 - self.guidance_scale_mid_damper) - 1
|
145 |
guidance_scale_effective = self.guidance_scale_base - max_guidance_reduction * mid_factor
|
146 |
self.guidance_scale = guidance_scale_effective
|
147 |
-
self.
|
148 |
|
149 |
-
def set_branch1_crossfeed(self, crossfeed_power, crossfeed_range, crossfeed_decay):
|
150 |
r"""
|
151 |
Sets the crossfeed parameters for the first branch to the last branch.
|
152 |
Args:
|
@@ -161,7 +178,7 @@ class LatentBlending():
|
|
161 |
self.branch1_crossfeed_range = np.clip(crossfeed_range, 0, 1)
|
162 |
self.branch1_crossfeed_decay = np.clip(crossfeed_decay, 0, 1)
|
163 |
|
164 |
-
def set_parental_crossfeed(self, crossfeed_power, crossfeed_range, crossfeed_decay):
|
165 |
r"""
|
166 |
Sets the crossfeed parameters for all transition images (within the first and last branch).
|
167 |
Args:
|
@@ -172,9 +189,22 @@ class LatentBlending():
|
|
172 |
crossfeed_decay: float [0,1]
|
173 |
Sets decay for branch1_crossfeed_power. Lower values make the decay stronger across the range.
|
174 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
self.parental_crossfeed_power = np.clip(crossfeed_power, 0, 1)
|
176 |
self.parental_crossfeed_range = np.clip(crossfeed_range, 0, 1)
|
177 |
-
self.
|
178 |
|
179 |
def set_prompt1(self, prompt: str):
|
180 |
r"""
|
@@ -213,15 +243,59 @@ class LatentBlending():
|
|
213 |
image: Image
|
214 |
"""
|
215 |
self.image2_lowres = image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
217 |
def run_transition(
|
218 |
self,
|
219 |
recycle_img1: Optional[bool] = False,
|
220 |
recycle_img2: Optional[bool] = False,
|
221 |
-
num_inference_steps: Optional[int] = 30,
|
222 |
-
depth_strength: Optional[float] = 0.3,
|
223 |
-
t_compute_max_allowed: Optional[float] = None,
|
224 |
-
nmb_max_branches: Optional[int] = None,
|
225 |
fixed_seeds: Optional[List[int]] = None):
|
226 |
r"""
|
227 |
Function for computing transitions.
|
@@ -233,17 +307,7 @@ class LatentBlending():
|
|
233 |
Don't recompute the latents for the second keyframe (purely prompt2). Saves compute.
|
234 |
num_inference_steps:
|
235 |
Number of diffusion steps. Higher values will take more compute time.
|
236 |
-
|
237 |
-
Determines how deep the first injection will happen.
|
238 |
-
Deeper injections will cause (unwanted) formation of new structures,
|
239 |
-
more shallow values will go into alpha-blendy land.
|
240 |
-
t_compute_max_allowed:
|
241 |
-
Either provide t_compute_max_allowed or nmb_max_branches.
|
242 |
-
The maximum time allowed for computation. Higher values give better results but take longer.
|
243 |
-
nmb_max_branches: int
|
244 |
-
Either provide t_compute_max_allowed or nmb_max_branches. The maximum number of branches to be computed. Higher values give better
|
245 |
-
results. Use this if you want to have controllable results independent
|
246 |
-
of your computer.
|
247 |
fixed_seeds: Optional[List[int)]:
|
248 |
You can supply two seeds that are used for the first and second keyframe (prompt1 and prompt2).
|
249 |
Otherwise random seeds will be taken.
|
@@ -252,6 +316,7 @@ class LatentBlending():
|
|
252 |
# Sanity checks first
|
253 |
assert self.text_embedding1 is not None, 'Set the first text embedding with .set_prompt1(...) before'
|
254 |
assert self.text_embedding2 is not None, 'Set the second text embedding with .set_prompt2(...) before'
|
|
|
255 |
|
256 |
# Random seeds
|
257 |
if fixed_seeds is not None:
|
@@ -263,10 +328,7 @@ class LatentBlending():
|
|
263 |
self.seed1 = fixed_seeds[0]
|
264 |
self.seed2 = fixed_seeds[1]
|
265 |
|
266 |
-
|
267 |
-
self.num_inference_steps = num_inference_steps
|
268 |
-
self.sdh.num_inference_steps = num_inference_steps
|
269 |
-
|
270 |
# Compute / Recycle first image
|
271 |
if not recycle_img1 or len(self.tree_latents[0]) != self.num_inference_steps:
|
272 |
list_latents1 = self.compute_latents1()
|
@@ -282,29 +344,28 @@ class LatentBlending():
|
|
282 |
# Reset the tree, injecting the edge latents1/2 we just generated/recycled
|
283 |
self.tree_latents = [list_latents1, list_latents2]
|
284 |
self.tree_fracts = [0.0, 1.0]
|
285 |
-
self.tree_final_imgs = [self.
|
286 |
self.tree_idx_injection = [0, 0]
|
|
|
287 |
|
288 |
-
# Hard-fix. Apply spatial mask only for list_latents2 but not for transition. WIP...
|
289 |
-
self.spatial_mask = None
|
290 |
-
|
291 |
-
# Set up branching scheme (dependent on provided compute time)
|
292 |
-
list_idx_injection, list_nmb_stems = self.get_time_based_branching(depth_strength, t_compute_max_allowed, nmb_max_branches)
|
293 |
|
294 |
# Run iteratively, starting with the longest trajectory.
|
295 |
# Always inserting new branches where they are needed most according to image similarity
|
296 |
-
for s_idx in tqdm(range(len(list_idx_injection))):
|
297 |
-
nmb_stems = list_nmb_stems[s_idx]
|
298 |
-
idx_injection = list_idx_injection[s_idx]
|
299 |
|
300 |
for i in range(nmb_stems):
|
301 |
fract_mixing, b_parent1, b_parent2 = self.get_mixing_parameters(idx_injection)
|
302 |
self.set_guidance_mid_dampening(fract_mixing)
|
303 |
list_latents = self.compute_latents_mix(fract_mixing, b_parent1, b_parent2, idx_injection)
|
304 |
self.insert_into_tree(fract_mixing, idx_injection, list_latents)
|
305 |
-
# print(f"fract_mixing: {fract_mixing} idx_injection {idx_injection}")
|
306 |
|
307 |
return self.tree_final_imgs
|
|
|
|
|
|
|
308 |
|
309 |
def compute_latents1(self, return_image=False):
|
310 |
r"""
|
@@ -322,10 +383,10 @@ class LatentBlending():
|
|
322 |
latents_start=latents_start,
|
323 |
idx_start=0)
|
324 |
t1 = time.time()
|
325 |
-
self.
|
326 |
self.tree_latents[0] = list_latents1
|
327 |
if return_image:
|
328 |
-
return self.
|
329 |
else:
|
330 |
return list_latents1
|
331 |
|
@@ -357,7 +418,7 @@ class LatentBlending():
|
|
357 |
self.tree_latents[-1] = list_latents2
|
358 |
|
359 |
if return_image:
|
360 |
-
return self.
|
361 |
else:
|
362 |
return list_latents2
|
363 |
|
@@ -392,7 +453,7 @@ class LatentBlending():
|
|
392 |
mixing_coeffs = idx_injection * [self.parental_crossfeed_power]
|
393 |
nmb_mixing = idx_mixing_stop - idx_injection
|
394 |
if nmb_mixing > 0:
|
395 |
-
mixing_coeffs.extend(list(np.linspace(self.parental_crossfeed_power, self.parental_crossfeed_power * self.
|
396 |
mixing_coeffs.extend((self.num_inference_steps - len(mixing_coeffs)) * [0])
|
397 |
latents_start = list_latents_parental_mix[idx_injection - 1]
|
398 |
list_latents = self.run_diffusion(
|
@@ -421,8 +482,10 @@ class LatentBlending():
|
|
421 |
results. Use this if you want to have controllable results independent
|
422 |
of your computer.
|
423 |
"""
|
424 |
-
idx_injection_base = int(
|
425 |
-
|
|
|
|
|
426 |
list_nmb_stems = np.ones(len(list_idx_injection), dtype=np.int32)
|
427 |
t_compute = 0
|
428 |
|
@@ -440,10 +503,11 @@ class LatentBlending():
|
|
440 |
while not stop_criterion_reached:
|
441 |
list_compute_steps = self.num_inference_steps - list_idx_injection
|
442 |
list_compute_steps *= list_nmb_stems
|
443 |
-
t_compute = np.sum(list_compute_steps) * self.
|
|
|
444 |
increase_done = False
|
445 |
for s_idx in range(len(list_nmb_stems) - 1):
|
446 |
-
if list_nmb_stems[s_idx + 1] / list_nmb_stems[s_idx] >=
|
447 |
list_nmb_stems[s_idx] += 1
|
448 |
increase_done = True
|
449 |
break
|
@@ -474,15 +538,15 @@ class LatentBlending():
|
|
474 |
the index in terms of diffusion steps, where the next insertion will start.
|
475 |
"""
|
476 |
# get_lpips_similarity
|
477 |
-
similarities =
|
478 |
-
|
479 |
-
similarities.append(self.get_lpips_similarity(self.tree_final_imgs[i], self.tree_final_imgs[i + 1]))
|
480 |
b_closest1 = np.argmax(similarities)
|
481 |
b_closest2 = b_closest1 + 1
|
482 |
fract_closest1 = self.tree_fracts[b_closest1]
|
483 |
fract_closest2 = self.tree_fracts[b_closest2]
|
|
|
484 |
|
485 |
-
# Ensure that the parents are indeed older
|
486 |
b_parent1 = b_closest1
|
487 |
while True:
|
488 |
if self.tree_idx_injection[b_parent1] < idx_injection:
|
@@ -495,7 +559,6 @@ class LatentBlending():
|
|
495 |
break
|
496 |
else:
|
497 |
b_parent2 += 1
|
498 |
-
fract_mixing = (fract_closest1 + fract_closest2) / 2
|
499 |
return fract_mixing, b_parent1, b_parent2
|
500 |
|
501 |
def insert_into_tree(self, fract_mixing, idx_injection, list_latents):
|
@@ -509,40 +572,21 @@ class LatentBlending():
|
|
509 |
list_latents: list
|
510 |
list of the latents to be inserted
|
511 |
"""
|
|
|
|
|
512 |
b_parent1, b_parent2 = self.get_closest_idx(fract_mixing)
|
513 |
-
self.
|
514 |
-
self.
|
515 |
-
|
516 |
-
self.
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
def set_spatial_mask(self, img_mask):
|
527 |
-
r"""
|
528 |
-
Experimental helper function to set a spatial mask.
|
529 |
-
The mask forces latents to be overwritten.
|
530 |
-
Args:
|
531 |
-
img_mask:
|
532 |
-
mask image [0,1]. You can get a template using get_spatial_mask_template
|
533 |
-
"""
|
534 |
-
shape_latents = [self.sdh.C, self.sdh.height // self.sdh.f, self.sdh.width // self.sdh.f]
|
535 |
-
C, H, W = shape_latents
|
536 |
-
img_mask = np.asarray(img_mask)
|
537 |
-
assert len(img_mask.shape) == 2, "Currently, only 2D images are supported as mask"
|
538 |
-
img_mask = np.clip(img_mask, 0, 1)
|
539 |
-
assert img_mask.shape[0] == H, f"Your mask needs to be of dimension {H} x {W}"
|
540 |
-
assert img_mask.shape[1] == W, f"Your mask needs to be of dimension {H} x {W}"
|
541 |
-
spatial_mask = torch.from_numpy(img_mask).to(device=self.device)
|
542 |
-
spatial_mask = torch.unsqueeze(spatial_mask, 0)
|
543 |
-
spatial_mask = spatial_mask.repeat((C, 1, 1))
|
544 |
-
spatial_mask = torch.unsqueeze(spatial_mask, 0)
|
545 |
-
self.spatial_mask = spatial_mask
|
546 |
|
547 |
def get_noise(self, seed):
|
548 |
r"""
|
@@ -550,16 +594,7 @@ class LatentBlending():
|
|
550 |
Args:
|
551 |
seed: int
|
552 |
"""
|
553 |
-
|
554 |
-
if self.mode == 'standard':
|
555 |
-
shape_latents = [self.sdh.C, self.sdh.height // self.sdh.f, self.sdh.width // self.sdh.f]
|
556 |
-
C, H, W = shape_latents
|
557 |
-
elif self.mode == 'upscale':
|
558 |
-
w = self.image1_lowres.size[0]
|
559 |
-
h = self.image1_lowres.size[1]
|
560 |
-
shape_latents = [self.sdh.model.channels, h, w]
|
561 |
-
C, H, W = shape_latents
|
562 |
-
return torch.randn((1, C, H, W), generator=generator, device=self.sdh.device)
|
563 |
|
564 |
@torch.no_grad()
|
565 |
def run_diffusion(
|
@@ -590,132 +625,32 @@ class LatentBlending():
|
|
590 |
"""
|
591 |
|
592 |
# Ensure correct num_inference_steps in Holder
|
593 |
-
self.
|
594 |
assert type(list_conditionings) is list, "list_conditionings need to be a list"
|
595 |
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
return_image=return_image)
|
606 |
-
|
607 |
-
elif self.mode == 'upscale':
|
608 |
-
cond = list_conditionings[0]
|
609 |
-
uc_full = list_conditionings[1]
|
610 |
-
return self.sdh.run_diffusion_upscaling(
|
611 |
-
cond,
|
612 |
-
uc_full,
|
613 |
-
latents_start=latents_start,
|
614 |
-
idx_start=idx_start,
|
615 |
-
list_latents_mixing=list_latents_mixing,
|
616 |
-
mixing_coeffs=mixing_coeffs,
|
617 |
-
return_image=return_image)
|
618 |
|
619 |
-
def run_upscaling(
|
620 |
-
self,
|
621 |
-
dp_img: str,
|
622 |
-
depth_strength: float = 0.65,
|
623 |
-
num_inference_steps: int = 100,
|
624 |
-
nmb_max_branches_highres: int = 5,
|
625 |
-
nmb_max_branches_lowres: int = 6,
|
626 |
-
duration_single_segment=3,
|
627 |
-
fps=24,
|
628 |
-
fixed_seeds: Optional[List[int]] = None):
|
629 |
-
r"""
|
630 |
-
Runs upscaling with the x4 model. Requires that you run a transition before with a low-res model and save the results using write_imgs_transition.
|
631 |
|
632 |
-
Args:
|
633 |
-
dp_img: str
|
634 |
-
Path to the low-res transition path (as saved in write_imgs_transition)
|
635 |
-
depth_strength:
|
636 |
-
Determines how deep the first injection will happen.
|
637 |
-
Deeper injections will cause (unwanted) formation of new structures,
|
638 |
-
more shallow values will go into alpha-blendy land.
|
639 |
-
num_inference_steps:
|
640 |
-
Number of diffusion steps. Higher values will take more compute time.
|
641 |
-
nmb_max_branches_highres: int
|
642 |
-
Number of final branches of the upscaling transition pass. Note this is the number
|
643 |
-
of branches between each pair of low-res images.
|
644 |
-
nmb_max_branches_lowres: int
|
645 |
-
Number of input low-res images, subsampling all transition images written in the low-res pass.
|
646 |
-
Setting this number lower (e.g. 6) will decrease the compute time but not affect the results too much.
|
647 |
-
duration_single_segment: float
|
648 |
-
The duration of each high-res movie segment. You will have nmb_max_branches_lowres-1 segments in total.
|
649 |
-
fps: float
|
650 |
-
frames per second of movie
|
651 |
-
fixed_seeds: Optional[List[int)]:
|
652 |
-
You can supply two seeds that are used for the first and second keyframe (prompt1 and prompt2).
|
653 |
-
Otherwise random seeds will be taken.
|
654 |
-
"""
|
655 |
-
fp_yml = os.path.join(dp_img, "lowres.yaml")
|
656 |
-
fp_movie = os.path.join(dp_img, "movie_highres.mp4")
|
657 |
-
ms = MovieSaver(fp_movie, fps=fps)
|
658 |
-
assert os.path.isfile(fp_yml), "lowres.yaml does not exist. did you forget run_upscaling_step1?"
|
659 |
-
dict_stuff = yml_load(fp_yml)
|
660 |
-
|
661 |
-
# load lowres images
|
662 |
-
nmb_images_lowres = dict_stuff['nmb_images']
|
663 |
-
prompt1 = dict_stuff['prompt1']
|
664 |
-
prompt2 = dict_stuff['prompt2']
|
665 |
-
idx_img_lowres = np.round(np.linspace(0, nmb_images_lowres - 1, nmb_max_branches_lowres)).astype(np.int32)
|
666 |
-
imgs_lowres = []
|
667 |
-
for i in idx_img_lowres:
|
668 |
-
fp_img_lowres = os.path.join(dp_img, f"lowres_img_{str(i).zfill(4)}.jpg")
|
669 |
-
assert os.path.isfile(fp_img_lowres), f"{fp_img_lowres} does not exist. did you forget run_upscaling_step1?"
|
670 |
-
imgs_lowres.append(Image.open(fp_img_lowres))
|
671 |
-
|
672 |
-
# set up upscaling
|
673 |
-
text_embeddingA = self.sdh.get_text_embedding(prompt1)
|
674 |
-
text_embeddingB = self.sdh.get_text_embedding(prompt2)
|
675 |
-
list_fract_mixing = np.linspace(0, 1, nmb_max_branches_lowres - 1)
|
676 |
-
for i in range(nmb_max_branches_lowres - 1):
|
677 |
-
print(f"Starting movie segment {i+1}/{nmb_max_branches_lowres-1}")
|
678 |
-
self.text_embedding1 = interpolate_linear(text_embeddingA, text_embeddingB, list_fract_mixing[i])
|
679 |
-
self.text_embedding2 = interpolate_linear(text_embeddingA, text_embeddingB, 1 - list_fract_mixing[i])
|
680 |
-
if i == 0:
|
681 |
-
recycle_img1 = False
|
682 |
-
else:
|
683 |
-
self.swap_forward()
|
684 |
-
recycle_img1 = True
|
685 |
-
|
686 |
-
self.set_image1(imgs_lowres[i])
|
687 |
-
self.set_image2(imgs_lowres[i + 1])
|
688 |
-
|
689 |
-
list_imgs = self.run_transition(
|
690 |
-
recycle_img1=recycle_img1,
|
691 |
-
recycle_img2=False,
|
692 |
-
num_inference_steps=num_inference_steps,
|
693 |
-
depth_strength=depth_strength,
|
694 |
-
nmb_max_branches=nmb_max_branches_highres)
|
695 |
-
list_imgs_interp = add_frames_linear_interp(list_imgs, fps, duration_single_segment)
|
696 |
-
|
697 |
-
# Save movie frame
|
698 |
-
for img in list_imgs_interp:
|
699 |
-
ms.write_frame(img)
|
700 |
-
ms.finalize()
|
701 |
|
702 |
@torch.no_grad()
|
703 |
def get_mixed_conditioning(self, fract_mixing):
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
condB, uc_fullB = self.sdh.get_cond_upscaling(self.image2_lowres, text_embeddings_mix, self.noise_level_upscaling)
|
714 |
-
cond['c_concat'][0] = interpolate_spherical(cond['c_concat'][0], condB['c_concat'][0], fract_mixing)
|
715 |
-
uc_full['c_concat'][0] = interpolate_spherical(uc_full['c_concat'][0], uc_fullB['c_concat'][0], fract_mixing)
|
716 |
-
list_conditionings = [cond, uc_full]
|
717 |
-
else:
|
718 |
-
raise ValueError(f"mix_conditioning: unknown mode {self.mode}")
|
719 |
return list_conditionings
|
720 |
|
721 |
@torch.no_grad()
|
@@ -729,7 +664,7 @@ class LatentBlending():
|
|
729 |
prompt: str
|
730 |
ABC trending on artstation painted by Old Greg.
|
731 |
"""
|
732 |
-
return self.
|
733 |
|
734 |
def write_imgs_transition(self, dp_img):
|
735 |
r"""
|
@@ -745,7 +680,6 @@ class LatentBlending():
|
|
745 |
img_leaf = Image.fromarray(img)
|
746 |
img_leaf.save(os.path.join(dp_img, f"lowres_img_{str(i).zfill(4)}.jpg"))
|
747 |
fp_yml = os.path.join(dp_img, "lowres.yaml")
|
748 |
-
self.save_statedict(fp_yml)
|
749 |
|
750 |
def write_movie_transition(self, fp_movie, duration_transition, fps=30):
|
751 |
r"""
|
@@ -761,22 +695,16 @@ class LatentBlending():
|
|
761 |
"""
|
762 |
|
763 |
# Let's get more cheap frames via linear interpolation (duration_transition*fps frames)
|
764 |
-
imgs_transition_ext =
|
765 |
|
766 |
# Save as MP4
|
767 |
if os.path.isfile(fp_movie):
|
768 |
os.remove(fp_movie)
|
769 |
-
ms = MovieSaver(fp_movie, fps=fps, shape_hw=[self.
|
770 |
for img in tqdm(imgs_transition_ext):
|
771 |
ms.write_frame(img)
|
772 |
ms.finalize()
|
773 |
|
774 |
-
def save_statedict(self, fp_yml):
|
775 |
-
# Dump everything relevant into yaml
|
776 |
-
imgs_transition = self.tree_final_imgs
|
777 |
-
state_dict = self.get_state_dict()
|
778 |
-
state_dict['nmb_images'] = len(imgs_transition)
|
779 |
-
yml_save(fp_yml, state_dict)
|
780 |
|
781 |
def get_state_dict(self):
|
782 |
state_dict = {}
|
@@ -784,7 +712,7 @@ class LatentBlending():
|
|
784 |
'num_inference_steps', 'depth_strength', 'guidance_scale',
|
785 |
'guidance_scale_mid_damper', 'mid_compression_scaler', 'negative_prompt',
|
786 |
'branch1_crossfeed_power', 'branch1_crossfeed_range', 'branch1_crossfeed_decay'
|
787 |
-
'parental_crossfeed_power', 'parental_crossfeed_range', '
|
788 |
for v in grab_vars:
|
789 |
if hasattr(self, v):
|
790 |
if v == 'seed1' or v == 'seed2':
|
@@ -799,35 +727,6 @@ class LatentBlending():
|
|
799 |
pass
|
800 |
return state_dict
|
801 |
|
802 |
-
def randomize_seed(self):
|
803 |
-
r"""
|
804 |
-
Set a random seed for a fresh start.
|
805 |
-
"""
|
806 |
-
seed = np.random.randint(999999999)
|
807 |
-
self.set_seed(seed)
|
808 |
-
|
809 |
-
def set_seed(self, seed: int):
|
810 |
-
r"""
|
811 |
-
Set a the seed for a fresh start.
|
812 |
-
"""
|
813 |
-
self.seed = seed
|
814 |
-
self.sdh.seed = seed
|
815 |
-
|
816 |
-
def set_width(self, width):
|
817 |
-
r"""
|
818 |
-
Set the width of the resulting image.
|
819 |
-
"""
|
820 |
-
assert np.mod(width, 64) == 0, "set_width: value needs to be divisible by 64"
|
821 |
-
self.width = width
|
822 |
-
self.sdh.width = width
|
823 |
-
|
824 |
-
def set_height(self, height):
|
825 |
-
r"""
|
826 |
-
Set the height of the resulting image.
|
827 |
-
"""
|
828 |
-
assert np.mod(height, 64) == 0, "set_height: value needs to be divisible by 64"
|
829 |
-
self.height = height
|
830 |
-
self.sdh.height = height
|
831 |
|
832 |
def swap_forward(self):
|
833 |
r"""
|
@@ -848,16 +747,22 @@ class LatentBlending():
|
|
848 |
Used to determine the optimal point of insertion to create smooth transitions.
|
849 |
High values indicate low similarity.
|
850 |
"""
|
851 |
-
tensorA = torch.from_numpy(imgA).float().cuda(self.device)
|
852 |
tensorA = 2 * tensorA / 255.0 - 1
|
853 |
tensorA = tensorA.permute([2, 0, 1]).unsqueeze(0)
|
854 |
-
tensorB = torch.from_numpy(imgB).float().cuda(self.device)
|
855 |
tensorB = 2 * tensorB / 255.0 - 1
|
856 |
tensorB = tensorB.permute([2, 0, 1]).unsqueeze(0)
|
857 |
lploss = self.lpips(tensorA, tensorB)
|
858 |
lploss = float(lploss[0][0][0][0])
|
859 |
return lploss
|
860 |
|
|
|
|
|
|
|
|
|
|
|
|
|
861 |
# Auxiliary functions
|
862 |
def get_closest_idx(
|
863 |
self,
|
@@ -882,3 +787,51 @@ class LatentBlending():
|
|
882 |
b_parent1 = tmp
|
883 |
|
884 |
return b_parent1, b_parent2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import torch
|
|
|
|
|
3 |
import numpy as np
|
4 |
import warnings
|
|
|
5 |
import time
|
|
|
6 |
from tqdm.auto import tqdm
|
7 |
from PIL import Image
|
|
|
8 |
from typing import List, Optional
|
|
|
9 |
import lpips
|
10 |
+
import platform
|
11 |
+
from latentblending.diffusers_holder import DiffusersHolder
|
12 |
+
from latentblending.utils import interpolate_spherical, interpolate_linear, add_frames_linear_interp
|
13 |
+
from lunar_tools import MovieSaver, fill_up_frames_linear_interpolation
|
14 |
+
warnings.filterwarnings('ignore')
|
15 |
+
torch.backends.cudnn.benchmark = False
|
16 |
+
torch.set_grad_enabled(False)
|
17 |
|
18 |
|
19 |
+
class BlendingEngine():
|
20 |
def __init__(
|
21 |
self,
|
22 |
+
pipe: None,
|
23 |
+
do_compile: bool = False,
|
24 |
guidance_scale_mid_damper: float = 0.5,
|
25 |
mid_compression_scaler: float = 1.2):
|
26 |
r"""
|
27 |
Initializes the latent blending class.
|
28 |
Args:
|
29 |
+
pipe: diffusers pipeline (SDXL)
|
30 |
+
do_compile: compile pipeline for faster inference using stable fast
|
|
|
|
|
|
|
|
|
31 |
guidance_scale_mid_damper: float = 0.5
|
32 |
Reduces the guidance scale towards the middle of the transition.
|
33 |
A value of 0.5 would decrease the guidance_scale towards the middle linearly by 0.5.
|
|
|
40 |
and guidance_scale_mid_damper <= 1.0, \
|
41 |
f"guidance_scale_mid_damper neees to be in interval (0,1], you provided {guidance_scale_mid_damper}"
|
42 |
|
43 |
+
|
44 |
+
self.dh = DiffusersHolder(pipe)
|
45 |
+
self.device = self.dh.device
|
46 |
+
self.set_dimensions()
|
47 |
+
|
48 |
self.guidance_scale_mid_damper = guidance_scale_mid_damper
|
49 |
self.mid_compression_scaler = mid_compression_scaler
|
50 |
self.seed1 = 0
|
|
|
53 |
# Initialize vars
|
54 |
self.prompt1 = ""
|
55 |
self.prompt2 = ""
|
|
|
56 |
|
57 |
self.tree_latents = [None, None]
|
58 |
self.tree_fracts = None
|
|
|
60 |
self.tree_status = None
|
61 |
self.tree_final_imgs = []
|
62 |
|
|
|
|
|
63 |
self.text_embedding1 = None
|
64 |
self.text_embedding2 = None
|
65 |
self.image1_lowres = None
|
66 |
self.image2_lowres = None
|
67 |
self.negative_prompt = None
|
68 |
+
|
69 |
+
self.set_guidance_scale()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
self.multi_transition_img_first = None
|
71 |
self.multi_transition_img_last = None
|
72 |
+
self.dt_unet_step = 0
|
73 |
+
if platform.system() == "Darwin":
|
74 |
+
self.lpips = lpips.LPIPS(net='alex')
|
75 |
+
else:
|
76 |
+
self.lpips = lpips.LPIPS(net='alex').cuda(self.device)
|
77 |
+
|
78 |
+
self.set_prompt1("")
|
79 |
+
self.set_prompt2("")
|
80 |
+
|
81 |
+
self.set_branch1_crossfeed()
|
82 |
+
self.set_parental_crossfeed()
|
83 |
+
|
84 |
+
self.set_num_inference_steps()
|
85 |
+
self.benchmark_speed()
|
86 |
+
self.set_branching()
|
87 |
+
|
88 |
+
if do_compile:
|
89 |
+
print("starting compilation")
|
90 |
+
from sfast.compilers.diffusion_pipeline_compiler import (compile, CompilationConfig)
|
91 |
+
self.dh.pipe.enable_xformers_memory_efficient_attention()
|
92 |
+
config = CompilationConfig.Default()
|
93 |
+
config.enable_xformers = True
|
94 |
+
config.enable_triton = True
|
95 |
+
config.enable_cuda_graph = True
|
96 |
+
self.dh.pipe = compile(self.dh.pipe, config)
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
def benchmark_speed(self):
|
101 |
+
"""
|
102 |
+
Measures the time per diffusion step and for the vae decoding
|
103 |
+
"""
|
104 |
+
print("starting speed benchmark...")
|
105 |
+
text_embeddings = self.dh.get_text_embedding("test")
|
106 |
+
latents_start = self.dh.get_noise(np.random.randint(111111))
|
107 |
+
# warmup
|
108 |
+
list_latents = self.dh.run_diffusion_sd_xl(text_embeddings=text_embeddings, latents_start=latents_start, return_image=False, idx_start=self.num_inference_steps-1)
|
109 |
+
# bench unet
|
110 |
+
t0 = time.time()
|
111 |
+
list_latents = self.dh.run_diffusion_sd_xl(text_embeddings=text_embeddings, latents_start=latents_start, return_image=False, idx_start=self.num_inference_steps-1)
|
112 |
+
self.dt_unet_step = time.time() - t0
|
113 |
+
|
114 |
+
# bench vae
|
115 |
+
t0 = time.time()
|
116 |
+
img = self.dh.latent2image(list_latents[-1])
|
117 |
+
self.dt_vae = time.time() - t0
|
118 |
+
print(f"time per unet iteration: {self.dt_unet_step} time for vae: {self.dt_vae}")
|
119 |
|
120 |
+
def set_dimensions(self, size_output=None):
|
121 |
r"""
|
122 |
+
sets the size of the output video.
|
123 |
+
Args:
|
124 |
+
size_output: tuple
|
125 |
+
width x height
|
126 |
+
Note: the size will get automatically adjusted to be divisable by 32.
|
127 |
"""
|
128 |
+
if size_output is None:
|
129 |
+
if self.dh.is_sdxl_turbo:
|
130 |
+
size_output = (512, 512)
|
131 |
+
else:
|
132 |
+
size_output = (1024, 1024)
|
133 |
+
self.dh.set_dimensions(size_output)
|
|
|
|
|
134 |
|
135 |
+
def set_guidance_scale(self, guidance_scale=None):
|
136 |
r"""
|
137 |
sets the guidance scale.
|
138 |
"""
|
139 |
+
if guidance_scale is None:
|
140 |
+
if self.dh.is_sdxl_turbo:
|
141 |
+
guidance_scale = 0.0
|
142 |
+
else:
|
143 |
+
guidance_scale = 4.0
|
144 |
+
|
145 |
self.guidance_scale_base = guidance_scale
|
146 |
self.guidance_scale = guidance_scale
|
147 |
+
self.dh.guidance_scale = guidance_scale
|
148 |
|
149 |
def set_negative_prompt(self, negative_prompt):
|
150 |
r"""Set the negative prompt. Currenty only one negative prompt is supported
|
151 |
"""
|
152 |
self.negative_prompt = negative_prompt
|
153 |
+
self.dh.set_negative_prompt(negative_prompt)
|
154 |
|
155 |
def set_guidance_mid_dampening(self, fract_mixing):
|
156 |
r"""
|
|
|
161 |
max_guidance_reduction = self.guidance_scale_base * (1 - self.guidance_scale_mid_damper) - 1
|
162 |
guidance_scale_effective = self.guidance_scale_base - max_guidance_reduction * mid_factor
|
163 |
self.guidance_scale = guidance_scale_effective
|
164 |
+
self.dh.guidance_scale = guidance_scale_effective
|
165 |
|
166 |
+
def set_branch1_crossfeed(self, crossfeed_power=0, crossfeed_range=0, crossfeed_decay=0):
|
167 |
r"""
|
168 |
Sets the crossfeed parameters for the first branch to the last branch.
|
169 |
Args:
|
|
|
178 |
self.branch1_crossfeed_range = np.clip(crossfeed_range, 0, 1)
|
179 |
self.branch1_crossfeed_decay = np.clip(crossfeed_decay, 0, 1)
|
180 |
|
181 |
+
def set_parental_crossfeed(self, crossfeed_power=None, crossfeed_range=None, crossfeed_decay=None):
|
182 |
r"""
|
183 |
Sets the crossfeed parameters for all transition images (within the first and last branch).
|
184 |
Args:
|
|
|
189 |
crossfeed_decay: float [0,1]
|
190 |
Sets decay for branch1_crossfeed_power. Lower values make the decay stronger across the range.
|
191 |
"""
|
192 |
+
|
193 |
+
if self.dh.is_sdxl_turbo:
|
194 |
+
if crossfeed_power is None:
|
195 |
+
crossfeed_power = 1.0
|
196 |
+
if crossfeed_range is None:
|
197 |
+
crossfeed_range = 1.0
|
198 |
+
if crossfeed_decay is None:
|
199 |
+
crossfeed_decay = 1.0
|
200 |
+
else:
|
201 |
+
crossfeed_power = 0.3
|
202 |
+
crossfeed_range = 0.6
|
203 |
+
crossfeed_decay = 0.9
|
204 |
+
|
205 |
self.parental_crossfeed_power = np.clip(crossfeed_power, 0, 1)
|
206 |
self.parental_crossfeed_range = np.clip(crossfeed_range, 0, 1)
|
207 |
+
self.parental_crossfeed_decay = np.clip(crossfeed_decay, 0, 1)
|
208 |
|
209 |
def set_prompt1(self, prompt: str):
|
210 |
r"""
|
|
|
243 |
image: Image
|
244 |
"""
|
245 |
self.image2_lowres = image
|
246 |
+
|
247 |
+
def set_num_inference_steps(self, num_inference_steps=None):
|
248 |
+
if self.dh.is_sdxl_turbo:
|
249 |
+
if num_inference_steps is None:
|
250 |
+
num_inference_steps = 4
|
251 |
+
else:
|
252 |
+
if num_inference_steps is None:
|
253 |
+
num_inference_steps = 30
|
254 |
+
|
255 |
+
self.num_inference_steps = num_inference_steps
|
256 |
+
self.dh.set_num_inference_steps(num_inference_steps)
|
257 |
+
|
258 |
+
def set_branching(self, depth_strength=None, t_compute_max_allowed=None, nmb_max_branches=None):
|
259 |
+
"""
|
260 |
+
Sets the branching structure of the blending tree. Default arguments depend on pipe!
|
261 |
+
depth_strength:
|
262 |
+
Determines how deep the first injection will happen.
|
263 |
+
Deeper injections will cause (unwanted) formation of new structures,
|
264 |
+
more shallow values will go into alpha-blendy land.
|
265 |
+
t_compute_max_allowed:
|
266 |
+
Either provide t_compute_max_allowed or nmb_max_branches.
|
267 |
+
The maximum time allowed for computation. Higher values give better results but take longer.
|
268 |
+
nmb_max_branches: int
|
269 |
+
Either provide t_compute_max_allowed or nmb_max_branches. The maximum number of branches to be computed. Higher values give better
|
270 |
+
results. Use this if you want to have controllable results independent
|
271 |
+
of your computer.
|
272 |
+
"""
|
273 |
+
if self.dh.is_sdxl_turbo:
|
274 |
+
assert t_compute_max_allowed is None, "time-based branching not supported for SDXL Turbo"
|
275 |
+
if depth_strength is not None:
|
276 |
+
idx_inject = int(round(self.num_inference_steps*depth_strength))
|
277 |
+
else:
|
278 |
+
idx_inject = 2
|
279 |
+
if nmb_max_branches is None:
|
280 |
+
nmb_max_branches = 10
|
281 |
+
|
282 |
+
self.list_idx_injection = [idx_inject]
|
283 |
+
self.list_nmb_stems = [nmb_max_branches]
|
284 |
+
|
285 |
+
else:
|
286 |
+
if depth_strength is None:
|
287 |
+
depth_strength = 0.5
|
288 |
+
if t_compute_max_allowed is None and nmb_max_branches is None:
|
289 |
+
t_compute_max_allowed = 20
|
290 |
+
elif t_compute_max_allowed is not None and nmb_max_branches is not None:
|
291 |
+
raise ValueErorr("Either specify t_compute_max_allowed or nmb_max_branches")
|
292 |
+
|
293 |
+
self.list_idx_injection, self.list_nmb_stems = self.get_time_based_branching(depth_strength, t_compute_max_allowed, nmb_max_branches)
|
294 |
|
295 |
def run_transition(
|
296 |
self,
|
297 |
recycle_img1: Optional[bool] = False,
|
298 |
recycle_img2: Optional[bool] = False,
|
|
|
|
|
|
|
|
|
299 |
fixed_seeds: Optional[List[int]] = None):
|
300 |
r"""
|
301 |
Function for computing transitions.
|
|
|
307 |
Don't recompute the latents for the second keyframe (purely prompt2). Saves compute.
|
308 |
num_inference_steps:
|
309 |
Number of diffusion steps. Higher values will take more compute time.
|
310 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
fixed_seeds: Optional[List[int)]:
|
312 |
You can supply two seeds that are used for the first and second keyframe (prompt1 and prompt2).
|
313 |
Otherwise random seeds will be taken.
|
|
|
316 |
# Sanity checks first
|
317 |
assert self.text_embedding1 is not None, 'Set the first text embedding with .set_prompt1(...) before'
|
318 |
assert self.text_embedding2 is not None, 'Set the second text embedding with .set_prompt2(...) before'
|
319 |
+
|
320 |
|
321 |
# Random seeds
|
322 |
if fixed_seeds is not None:
|
|
|
328 |
self.seed1 = fixed_seeds[0]
|
329 |
self.seed2 = fixed_seeds[1]
|
330 |
|
331 |
+
|
|
|
|
|
|
|
332 |
# Compute / Recycle first image
|
333 |
if not recycle_img1 or len(self.tree_latents[0]) != self.num_inference_steps:
|
334 |
list_latents1 = self.compute_latents1()
|
|
|
344 |
# Reset the tree, injecting the edge latents1/2 we just generated/recycled
|
345 |
self.tree_latents = [list_latents1, list_latents2]
|
346 |
self.tree_fracts = [0.0, 1.0]
|
347 |
+
self.tree_final_imgs = [self.dh.latent2image((self.tree_latents[0][-1])), self.dh.latent2image((self.tree_latents[-1][-1]))]
|
348 |
self.tree_idx_injection = [0, 0]
|
349 |
+
self.tree_similarities = [self.get_tree_similarities]
|
350 |
|
|
|
|
|
|
|
|
|
|
|
351 |
|
352 |
# Run iteratively, starting with the longest trajectory.
|
353 |
# Always inserting new branches where they are needed most according to image similarity
|
354 |
+
for s_idx in tqdm(range(len(self.list_idx_injection))):
|
355 |
+
nmb_stems = self.list_nmb_stems[s_idx]
|
356 |
+
idx_injection = self.list_idx_injection[s_idx]
|
357 |
|
358 |
for i in range(nmb_stems):
|
359 |
fract_mixing, b_parent1, b_parent2 = self.get_mixing_parameters(idx_injection)
|
360 |
self.set_guidance_mid_dampening(fract_mixing)
|
361 |
list_latents = self.compute_latents_mix(fract_mixing, b_parent1, b_parent2, idx_injection)
|
362 |
self.insert_into_tree(fract_mixing, idx_injection, list_latents)
|
363 |
+
# print(f"fract_mixing: {fract_mixing} idx_injection {idx_injection} bp1 {b_parent1} bp2 {b_parent2}")
|
364 |
|
365 |
return self.tree_final_imgs
|
366 |
+
|
367 |
+
|
368 |
+
|
369 |
|
370 |
def compute_latents1(self, return_image=False):
|
371 |
r"""
|
|
|
383 |
latents_start=latents_start,
|
384 |
idx_start=0)
|
385 |
t1 = time.time()
|
386 |
+
self.dt_unet_step = (t1 - t0) / self.num_inference_steps
|
387 |
self.tree_latents[0] = list_latents1
|
388 |
if return_image:
|
389 |
+
return self.dh.latent2image(list_latents1[-1])
|
390 |
else:
|
391 |
return list_latents1
|
392 |
|
|
|
418 |
self.tree_latents[-1] = list_latents2
|
419 |
|
420 |
if return_image:
|
421 |
+
return self.dh.latent2image(list_latents2[-1])
|
422 |
else:
|
423 |
return list_latents2
|
424 |
|
|
|
453 |
mixing_coeffs = idx_injection * [self.parental_crossfeed_power]
|
454 |
nmb_mixing = idx_mixing_stop - idx_injection
|
455 |
if nmb_mixing > 0:
|
456 |
+
mixing_coeffs.extend(list(np.linspace(self.parental_crossfeed_power, self.parental_crossfeed_power * self.parental_crossfeed_decay, nmb_mixing)))
|
457 |
mixing_coeffs.extend((self.num_inference_steps - len(mixing_coeffs)) * [0])
|
458 |
latents_start = list_latents_parental_mix[idx_injection - 1]
|
459 |
list_latents = self.run_diffusion(
|
|
|
482 |
results. Use this if you want to have controllable results independent
|
483 |
of your computer.
|
484 |
"""
|
485 |
+
idx_injection_base = int(np.floor(self.num_inference_steps * depth_strength))
|
486 |
+
|
487 |
+
steps = int(np.ceil(self.num_inference_steps/10))
|
488 |
+
list_idx_injection = np.arange(idx_injection_base, self.num_inference_steps, steps)
|
489 |
list_nmb_stems = np.ones(len(list_idx_injection), dtype=np.int32)
|
490 |
t_compute = 0
|
491 |
|
|
|
503 |
while not stop_criterion_reached:
|
504 |
list_compute_steps = self.num_inference_steps - list_idx_injection
|
505 |
list_compute_steps *= list_nmb_stems
|
506 |
+
t_compute = np.sum(list_compute_steps) * self.dt_unet_step + self.dt_vae * np.sum(list_nmb_stems)
|
507 |
+
t_compute += 2 * (self.num_inference_steps * self.dt_unet_step + self.dt_vae) # outer branches
|
508 |
increase_done = False
|
509 |
for s_idx in range(len(list_nmb_stems) - 1):
|
510 |
+
if list_nmb_stems[s_idx + 1] / list_nmb_stems[s_idx] >= 1:
|
511 |
list_nmb_stems[s_idx] += 1
|
512 |
increase_done = True
|
513 |
break
|
|
|
538 |
the index in terms of diffusion steps, where the next insertion will start.
|
539 |
"""
|
540 |
# get_lpips_similarity
|
541 |
+
similarities = self.tree_similarities
|
542 |
+
# similarities = self.get_tree_similarities()
|
|
|
543 |
b_closest1 = np.argmax(similarities)
|
544 |
b_closest2 = b_closest1 + 1
|
545 |
fract_closest1 = self.tree_fracts[b_closest1]
|
546 |
fract_closest2 = self.tree_fracts[b_closest2]
|
547 |
+
fract_mixing = (fract_closest1 + fract_closest2) / 2
|
548 |
|
549 |
+
# Ensure that the parents are indeed older
|
550 |
b_parent1 = b_closest1
|
551 |
while True:
|
552 |
if self.tree_idx_injection[b_parent1] < idx_injection:
|
|
|
559 |
break
|
560 |
else:
|
561 |
b_parent2 += 1
|
|
|
562 |
return fract_mixing, b_parent1, b_parent2
|
563 |
|
564 |
def insert_into_tree(self, fract_mixing, idx_injection, list_latents):
|
|
|
572 |
list_latents: list
|
573 |
list of the latents to be inserted
|
574 |
"""
|
575 |
+
img_insert = self.dh.latent2image(list_latents[-1])
|
576 |
+
|
577 |
b_parent1, b_parent2 = self.get_closest_idx(fract_mixing)
|
578 |
+
left_sim = self.get_lpips_similarity(img_insert, self.tree_final_imgs[b_parent1])
|
579 |
+
right_sim = self.get_lpips_similarity(img_insert, self.tree_final_imgs[b_parent2])
|
580 |
+
idx_insert = b_parent1 + 1
|
581 |
+
self.tree_latents.insert(idx_insert, list_latents)
|
582 |
+
self.tree_final_imgs.insert(idx_insert, img_insert)
|
583 |
+
self.tree_fracts.insert(idx_insert, fract_mixing)
|
584 |
+
self.tree_idx_injection.insert(idx_insert, idx_injection)
|
585 |
+
|
586 |
+
# update similarities
|
587 |
+
self.tree_similarities[b_parent1] = left_sim
|
588 |
+
self.tree_similarities.insert(idx_insert, right_sim)
|
589 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
590 |
|
591 |
def get_noise(self, seed):
|
592 |
r"""
|
|
|
594 |
Args:
|
595 |
seed: int
|
596 |
"""
|
597 |
+
return self.dh.get_noise(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
598 |
|
599 |
@torch.no_grad()
|
600 |
def run_diffusion(
|
|
|
625 |
"""
|
626 |
|
627 |
# Ensure correct num_inference_steps in Holder
|
628 |
+
self.dh.set_num_inference_steps(self.num_inference_steps)
|
629 |
assert type(list_conditionings) is list, "list_conditionings need to be a list"
|
630 |
|
631 |
+
text_embeddings = list_conditionings[0]
|
632 |
+
return self.dh.run_diffusion_sd_xl(
|
633 |
+
text_embeddings=text_embeddings,
|
634 |
+
latents_start=latents_start,
|
635 |
+
idx_start=idx_start,
|
636 |
+
list_latents_mixing=list_latents_mixing,
|
637 |
+
mixing_coeffs=mixing_coeffs,
|
638 |
+
return_image=return_image)
|
639 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
640 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
641 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
642 |
|
643 |
@torch.no_grad()
|
644 |
def get_mixed_conditioning(self, fract_mixing):
|
645 |
+
text_embeddings_mix = []
|
646 |
+
for i in range(len(self.text_embedding1)):
|
647 |
+
if self.text_embedding1[i] is None:
|
648 |
+
mix = None
|
649 |
+
else:
|
650 |
+
mix = interpolate_linear(self.text_embedding1[i], self.text_embedding2[i], fract_mixing)
|
651 |
+
text_embeddings_mix.append(mix)
|
652 |
+
list_conditionings = [text_embeddings_mix]
|
653 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
654 |
return list_conditionings
|
655 |
|
656 |
@torch.no_grad()
|
|
|
664 |
prompt: str
|
665 |
ABC trending on artstation painted by Old Greg.
|
666 |
"""
|
667 |
+
return self.dh.get_text_embedding(prompt)
|
668 |
|
669 |
def write_imgs_transition(self, dp_img):
|
670 |
r"""
|
|
|
680 |
img_leaf = Image.fromarray(img)
|
681 |
img_leaf.save(os.path.join(dp_img, f"lowres_img_{str(i).zfill(4)}.jpg"))
|
682 |
fp_yml = os.path.join(dp_img, "lowres.yaml")
|
|
|
683 |
|
684 |
def write_movie_transition(self, fp_movie, duration_transition, fps=30):
|
685 |
r"""
|
|
|
695 |
"""
|
696 |
|
697 |
# Let's get more cheap frames via linear interpolation (duration_transition*fps frames)
|
698 |
+
imgs_transition_ext = fill_up_frames_linear_interpolation(self.tree_final_imgs, duration_transition, fps)
|
699 |
|
700 |
# Save as MP4
|
701 |
if os.path.isfile(fp_movie):
|
702 |
os.remove(fp_movie)
|
703 |
+
ms = MovieSaver(fp_movie, fps=fps, shape_hw=[self.dh.height_img, self.dh.width_img])
|
704 |
for img in tqdm(imgs_transition_ext):
|
705 |
ms.write_frame(img)
|
706 |
ms.finalize()
|
707 |
|
|
|
|
|
|
|
|
|
|
|
|
|
708 |
|
709 |
def get_state_dict(self):
|
710 |
state_dict = {}
|
|
|
712 |
'num_inference_steps', 'depth_strength', 'guidance_scale',
|
713 |
'guidance_scale_mid_damper', 'mid_compression_scaler', 'negative_prompt',
|
714 |
'branch1_crossfeed_power', 'branch1_crossfeed_range', 'branch1_crossfeed_decay'
|
715 |
+
'parental_crossfeed_power', 'parental_crossfeed_range', 'parental_crossfeed_decay']
|
716 |
for v in grab_vars:
|
717 |
if hasattr(self, v):
|
718 |
if v == 'seed1' or v == 'seed2':
|
|
|
727 |
pass
|
728 |
return state_dict
|
729 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
730 |
|
731 |
def swap_forward(self):
|
732 |
r"""
|
|
|
747 |
Used to determine the optimal point of insertion to create smooth transitions.
|
748 |
High values indicate low similarity.
|
749 |
"""
|
750 |
+
tensorA = torch.from_numpy(np.asarray(imgA)).float().cuda(self.device)
|
751 |
tensorA = 2 * tensorA / 255.0 - 1
|
752 |
tensorA = tensorA.permute([2, 0, 1]).unsqueeze(0)
|
753 |
+
tensorB = torch.from_numpy(np.asarray(imgB)).float().cuda(self.device)
|
754 |
tensorB = 2 * tensorB / 255.0 - 1
|
755 |
tensorB = tensorB.permute([2, 0, 1]).unsqueeze(0)
|
756 |
lploss = self.lpips(tensorA, tensorB)
|
757 |
lploss = float(lploss[0][0][0][0])
|
758 |
return lploss
|
759 |
|
760 |
+
def get_tree_similarities(self):
|
761 |
+
similarities = []
|
762 |
+
for i in range(len(self.tree_final_imgs) - 1):
|
763 |
+
similarities.append(self.get_lpips_similarity(self.tree_final_imgs[i], self.tree_final_imgs[i + 1]))
|
764 |
+
return similarities
|
765 |
+
|
766 |
# Auxiliary functions
|
767 |
def get_closest_idx(
|
768 |
self,
|
|
|
787 |
b_parent1 = tmp
|
788 |
|
789 |
return b_parent1, b_parent2
|
790 |
+
|
791 |
+
#%%
|
792 |
+
if __name__ == "__main__":
|
793 |
+
|
794 |
+
# %% First let us spawn a stable diffusion holder. Uncomment your version of choice.
|
795 |
+
from diffusers_holder import DiffusersHolder
|
796 |
+
from diffusers import DiffusionPipeline
|
797 |
+
from diffusers import AutoencoderTiny
|
798 |
+
# pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
799 |
+
pretrained_model_name_or_path = "stabilityai/sdxl-turbo"
|
800 |
+
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path)
|
801 |
+
|
802 |
+
|
803 |
+
# pipe.to("mps")
|
804 |
+
pipe.to("cuda")
|
805 |
+
|
806 |
+
# pipe.vae = AutoencoderTiny.from_pretrained('madebyollin/taesdxl', torch_device='cuda', torch_dtype=torch.float16)
|
807 |
+
# pipe.vae = pipe.vae.cuda()
|
808 |
+
|
809 |
+
dh = DiffusersHolder(pipe)
|
810 |
+
|
811 |
+
xxx
|
812 |
+
# %% Next let's set up all parameters
|
813 |
+
prompt1 = "photo of underwater landscape, fish, und the sea, incredible detail, high resolution"
|
814 |
+
prompt2 = "rendering of an alien planet, strange plants, strange creatures, surreal"
|
815 |
+
negative_prompt = "blurry, ugly, pale" # Optional
|
816 |
+
|
817 |
+
duration_transition = 12 # In seconds
|
818 |
+
|
819 |
+
# Spawn latent blending
|
820 |
+
be = BlendingEngine(dh)
|
821 |
+
be.set_prompt1(prompt1)
|
822 |
+
be.set_prompt2(prompt2)
|
823 |
+
be.set_negative_prompt(negative_prompt)
|
824 |
+
|
825 |
+
# Run latent blending
|
826 |
+
t0 = time.time()
|
827 |
+
be.run_transition(fixed_seeds=[420, 421])
|
828 |
+
dt = time.time() - t0
|
829 |
+
print(f"dt = {dt}")
|
830 |
+
|
831 |
+
# Save movie
|
832 |
+
fp_movie = f'test.mp4'
|
833 |
+
be.write_movie_transition(fp_movie, duration_transition)
|
834 |
+
|
835 |
+
|
836 |
+
|
837 |
+
|
latentblending/diffusers_holder.py
ADDED
@@ -0,0 +1,474 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import warnings
|
4 |
+
|
5 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
6 |
+
from latentblending.utils import interpolate_spherical
|
7 |
+
from diffusers import DiffusionPipeline, StableDiffusionControlNetPipeline, ControlNetModel
|
8 |
+
from diffusers.models.attention_processor import (
|
9 |
+
AttnProcessor2_0,
|
10 |
+
LoRAAttnProcessor2_0,
|
11 |
+
LoRAXFormersAttnProcessor,
|
12 |
+
XFormersAttnProcessor,
|
13 |
+
)
|
14 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import retrieve_timesteps
|
15 |
+
warnings.filterwarnings('ignore')
|
16 |
+
torch.backends.cudnn.benchmark = False
|
17 |
+
torch.set_grad_enabled(False)
|
18 |
+
|
19 |
+
|
20 |
+
class DiffusersHolder():
|
21 |
+
def __init__(self, pipe):
|
22 |
+
# Base settings
|
23 |
+
self.negative_prompt = ""
|
24 |
+
self.guidance_scale = 5.0
|
25 |
+
self.num_inference_steps = 30
|
26 |
+
|
27 |
+
# Check if valid pipe
|
28 |
+
self.pipe = pipe
|
29 |
+
self.device = str(pipe._execution_device)
|
30 |
+
self.init_types()
|
31 |
+
|
32 |
+
self.width_latent = self.pipe.unet.config.sample_size
|
33 |
+
self.height_latent = self.pipe.unet.config.sample_size
|
34 |
+
self.width_img = self.width_latent * self.pipe.vae_scale_factor
|
35 |
+
self.height_img = self.height_latent * self.pipe.vae_scale_factor
|
36 |
+
|
37 |
+
|
38 |
+
def init_types(self):
|
39 |
+
assert hasattr(self.pipe, "__class__"), "No valid diffusers pipeline found."
|
40 |
+
assert hasattr(self.pipe.__class__, "__name__"), "No valid diffusers pipeline found."
|
41 |
+
if self.pipe.__class__.__name__ == 'StableDiffusionXLPipeline':
|
42 |
+
self.pipe.scheduler.set_timesteps(self.num_inference_steps, device=self.device)
|
43 |
+
prompt_embeds, _, _, _ = self.pipe.encode_prompt("test")
|
44 |
+
else:
|
45 |
+
prompt_embeds = self.pipe._encode_prompt("test", self.device, 1, True)
|
46 |
+
self.dtype = prompt_embeds.dtype
|
47 |
+
|
48 |
+
self.is_sdxl_turbo = 'turbo' in self.pipe._name_or_path
|
49 |
+
|
50 |
+
|
51 |
+
def set_num_inference_steps(self, num_inference_steps):
|
52 |
+
self.num_inference_steps = num_inference_steps
|
53 |
+
self.pipe.scheduler.set_timesteps(self.num_inference_steps, device=self.device)
|
54 |
+
|
55 |
+
def set_dimensions(self, size_output):
|
56 |
+
s = self.pipe.vae_scale_factor
|
57 |
+
if size_output is None:
|
58 |
+
width = self.pipe.unet.config.sample_size
|
59 |
+
height = self.pipe.unet.config.sample_size
|
60 |
+
else:
|
61 |
+
width, height = size_output
|
62 |
+
self.width_img = int(round(width / s) * s)
|
63 |
+
self.width_latent = int(self.width_img / s)
|
64 |
+
self.height_img = int(round(height / s) * s)
|
65 |
+
self.height_latent = int(self.height_img / s)
|
66 |
+
print(f"set_dimensions to width={width} and height={height}")
|
67 |
+
|
68 |
+
def set_negative_prompt(self, negative_prompt):
|
69 |
+
r"""Set the negative prompt. Currenty only one negative prompt is supported
|
70 |
+
"""
|
71 |
+
if isinstance(negative_prompt, str):
|
72 |
+
self.negative_prompt = [negative_prompt]
|
73 |
+
else:
|
74 |
+
self.negative_prompt = negative_prompt
|
75 |
+
|
76 |
+
if len(self.negative_prompt) > 1:
|
77 |
+
self.negative_prompt = [self.negative_prompt[0]]
|
78 |
+
|
79 |
+
def get_text_embedding(self, prompt):
|
80 |
+
do_classifier_free_guidance = self.guidance_scale > 1 and self.pipe.unet.config.time_cond_proj_dim is None
|
81 |
+
text_embeddings = self.pipe.encode_prompt(
|
82 |
+
prompt=prompt,
|
83 |
+
prompt_2=prompt,
|
84 |
+
device=self.pipe._execution_device,
|
85 |
+
num_images_per_prompt=1,
|
86 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
87 |
+
negative_prompt=self.negative_prompt,
|
88 |
+
negative_prompt_2=self.negative_prompt,
|
89 |
+
prompt_embeds=None,
|
90 |
+
negative_prompt_embeds=None,
|
91 |
+
pooled_prompt_embeds=None,
|
92 |
+
negative_pooled_prompt_embeds=None,
|
93 |
+
lora_scale=None,
|
94 |
+
clip_skip=None,#self.pipe._clip_skip,
|
95 |
+
)
|
96 |
+
return text_embeddings
|
97 |
+
|
98 |
+
def get_noise(self, seed=420):
|
99 |
+
|
100 |
+
latents = self.pipe.prepare_latents(
|
101 |
+
1,
|
102 |
+
self.pipe.unet.config.in_channels,
|
103 |
+
self.height_img,
|
104 |
+
self.width_img,
|
105 |
+
torch.float16,
|
106 |
+
self.pipe._execution_device,
|
107 |
+
torch.Generator(device=self.device).manual_seed(int(seed)),
|
108 |
+
None,
|
109 |
+
)
|
110 |
+
|
111 |
+
return latents
|
112 |
+
|
113 |
+
|
114 |
+
@torch.no_grad()
|
115 |
+
def latent2image(
|
116 |
+
self,
|
117 |
+
latents: torch.FloatTensor,
|
118 |
+
output_type="pil"):
|
119 |
+
r"""
|
120 |
+
Returns an image provided a latent representation from diffusion.
|
121 |
+
Args:
|
122 |
+
latents: torch.FloatTensor
|
123 |
+
Result of the diffusion process.
|
124 |
+
output_type: "pil" or "np"
|
125 |
+
"""
|
126 |
+
assert output_type in ["pil", "np"]
|
127 |
+
|
128 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
129 |
+
needs_upcasting = self.pipe.vae.dtype == torch.float16 and self.pipe.vae.config.force_upcast
|
130 |
+
|
131 |
+
if needs_upcasting:
|
132 |
+
self.pipe.upcast_vae()
|
133 |
+
latents = latents.to(next(iter(self.pipe.vae.post_quant_conv.parameters())).dtype)
|
134 |
+
|
135 |
+
image = self.pipe.vae.decode(latents / self.pipe.vae.config.scaling_factor, return_dict=False)[0]
|
136 |
+
|
137 |
+
# cast back to fp16 if needed
|
138 |
+
if needs_upcasting:
|
139 |
+
self.pipe.vae.to(dtype=torch.float16)
|
140 |
+
|
141 |
+
image = self.pipe.image_processor.postprocess(image, output_type=output_type)[0]
|
142 |
+
|
143 |
+
return image
|
144 |
+
|
145 |
+
|
146 |
+
def prepare_mixing(self, mixing_coeffs, list_latents_mixing):
|
147 |
+
if type(mixing_coeffs) == float:
|
148 |
+
list_mixing_coeffs = (1 + self.num_inference_steps) * [mixing_coeffs]
|
149 |
+
elif type(mixing_coeffs) == list:
|
150 |
+
assert len(mixing_coeffs) == self.num_inference_steps, f"len(mixing_coeffs) {len(mixing_coeffs)} != self.num_inference_steps {self.num_inference_steps}"
|
151 |
+
list_mixing_coeffs = mixing_coeffs
|
152 |
+
else:
|
153 |
+
raise ValueError("mixing_coeffs should be float or list with len=num_inference_steps")
|
154 |
+
if np.sum(list_mixing_coeffs) > 0:
|
155 |
+
assert len(list_latents_mixing) == self.num_inference_steps, f"len(list_latents_mixing) {len(list_latents_mixing)} != self.num_inference_steps {self.num_inference_steps}"
|
156 |
+
return list_mixing_coeffs
|
157 |
+
|
158 |
+
@torch.no_grad()
|
159 |
+
def run_diffusion(
|
160 |
+
self,
|
161 |
+
text_embeddings: torch.FloatTensor,
|
162 |
+
latents_start: torch.FloatTensor,
|
163 |
+
idx_start: int = 0,
|
164 |
+
list_latents_mixing=None,
|
165 |
+
mixing_coeffs=0.0,
|
166 |
+
return_image: Optional[bool] = False):
|
167 |
+
|
168 |
+
return self.run_diffusion_sd_xl(text_embeddings, latents_start, idx_start, list_latents_mixing, mixing_coeffs, return_image)
|
169 |
+
|
170 |
+
|
171 |
+
|
172 |
+
@torch.no_grad()
|
173 |
+
def run_diffusion_sd_xl(
|
174 |
+
self,
|
175 |
+
text_embeddings: tuple,
|
176 |
+
latents_start: torch.FloatTensor,
|
177 |
+
idx_start: int = 0,
|
178 |
+
list_latents_mixing=None,
|
179 |
+
mixing_coeffs=0.0,
|
180 |
+
return_image: Optional[bool] = False,
|
181 |
+
):
|
182 |
+
|
183 |
+
|
184 |
+
prompt_2 = None
|
185 |
+
height = None
|
186 |
+
width = None
|
187 |
+
timesteps = None
|
188 |
+
denoising_end = None
|
189 |
+
negative_prompt_2 = None
|
190 |
+
num_images_per_prompt = 1
|
191 |
+
eta = 0.0
|
192 |
+
generator = None
|
193 |
+
latents = None
|
194 |
+
prompt_embeds = None
|
195 |
+
negative_prompt_embeds = None
|
196 |
+
pooled_prompt_embeds = None
|
197 |
+
negative_pooled_prompt_embeds = None
|
198 |
+
ip_adapter_image = None
|
199 |
+
output_type = "pil"
|
200 |
+
return_dict = True
|
201 |
+
cross_attention_kwargs = None
|
202 |
+
guidance_rescale = 0.0
|
203 |
+
original_size = None
|
204 |
+
crops_coords_top_left = (0, 0)
|
205 |
+
target_size = None
|
206 |
+
negative_original_size = None
|
207 |
+
negative_crops_coords_top_left = (0, 0)
|
208 |
+
negative_target_size = None
|
209 |
+
clip_skip = None
|
210 |
+
callback = None
|
211 |
+
callback_on_step_end = None
|
212 |
+
callback_on_step_end_tensor_inputs = ["latents"]
|
213 |
+
# kwargs are additional keyword arguments and don't need a default value set here.
|
214 |
+
|
215 |
+
# 0. Default height and width to unet
|
216 |
+
height = height or self.pipe.default_sample_size * self.pipe.vae_scale_factor
|
217 |
+
width = width or self.pipe.default_sample_size * self.pipe.vae_scale_factor
|
218 |
+
|
219 |
+
original_size = original_size or (height, width)
|
220 |
+
target_size = target_size or (height, width)
|
221 |
+
|
222 |
+
# 1. Check inputs. skipped.
|
223 |
+
|
224 |
+
self.pipe._guidance_scale = self.guidance_scale
|
225 |
+
self.pipe._guidance_rescale = guidance_rescale
|
226 |
+
self.pipe._clip_skip = clip_skip
|
227 |
+
self.pipe._cross_attention_kwargs = cross_attention_kwargs
|
228 |
+
self.pipe._denoising_end = denoising_end
|
229 |
+
self.pipe._interrupt = False
|
230 |
+
|
231 |
+
# 2. Define call parameters
|
232 |
+
list_mixing_coeffs = self.prepare_mixing(mixing_coeffs, list_latents_mixing)
|
233 |
+
batch_size = 1
|
234 |
+
|
235 |
+
device = self.pipe._execution_device
|
236 |
+
|
237 |
+
# 3. Encode input prompt
|
238 |
+
lora_scale = None
|
239 |
+
(
|
240 |
+
prompt_embeds,
|
241 |
+
negative_prompt_embeds,
|
242 |
+
pooled_prompt_embeds,
|
243 |
+
negative_pooled_prompt_embeds,
|
244 |
+
) = text_embeddings
|
245 |
+
|
246 |
+
# 4. Prepare timesteps
|
247 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.pipe.scheduler, self.num_inference_steps, device, timesteps)
|
248 |
+
|
249 |
+
# 5. Prepare latent variables
|
250 |
+
num_channels_latents = self.pipe.unet.config.in_channels
|
251 |
+
latents = latents_start.clone()
|
252 |
+
list_latents_out = []
|
253 |
+
|
254 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
255 |
+
extra_step_kwargs = self.pipe.prepare_extra_step_kwargs(generator, eta)
|
256 |
+
|
257 |
+
# 7. Prepare added time ids & embeddings
|
258 |
+
add_text_embeds = pooled_prompt_embeds
|
259 |
+
if self.pipe.text_encoder_2 is None:
|
260 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
261 |
+
else:
|
262 |
+
text_encoder_projection_dim = self.pipe.text_encoder_2.config.projection_dim
|
263 |
+
|
264 |
+
add_time_ids = self.pipe._get_add_time_ids(
|
265 |
+
original_size,
|
266 |
+
crops_coords_top_left,
|
267 |
+
target_size,
|
268 |
+
dtype=prompt_embeds.dtype,
|
269 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
270 |
+
)
|
271 |
+
if negative_original_size is not None and negative_target_size is not None:
|
272 |
+
negative_add_time_ids = self.pipe._get_add_time_ids(
|
273 |
+
negative_original_size,
|
274 |
+
negative_crops_coords_top_left,
|
275 |
+
negative_target_size,
|
276 |
+
dtype=prompt_embeds.dtype,
|
277 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
278 |
+
)
|
279 |
+
else:
|
280 |
+
negative_add_time_ids = add_time_ids
|
281 |
+
|
282 |
+
if self.pipe.do_classifier_free_guidance:
|
283 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
284 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
285 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
286 |
+
|
287 |
+
prompt_embeds = prompt_embeds.to(device)
|
288 |
+
add_text_embeds = add_text_embeds.to(device)
|
289 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
290 |
+
|
291 |
+
if ip_adapter_image is not None:
|
292 |
+
output_hidden_state = False if isinstance(self.pipe.unet.encoder_hid_proj, ImageProjection) else True
|
293 |
+
image_embeds, negative_image_embeds = self.pipe.encode_image(
|
294 |
+
ip_adapter_image, device, num_images_per_prompt, output_hidden_state
|
295 |
+
)
|
296 |
+
if self.pipe.do_classifier_free_guidance:
|
297 |
+
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
298 |
+
image_embeds = image_embeds.to(device)
|
299 |
+
|
300 |
+
# 8. Denoising loop
|
301 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.pipe.scheduler.order, 0)
|
302 |
+
|
303 |
+
# 9. Optionally get Guidance Scale Embedding
|
304 |
+
timestep_cond = None
|
305 |
+
if self.pipe.unet.config.time_cond_proj_dim is not None:
|
306 |
+
guidance_scale_tensor = torch.tensor(self.pipe.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
307 |
+
timestep_cond = self.pipe.get_guidance_scale_embedding(
|
308 |
+
guidance_scale_tensor, embedding_dim=self.pipe.unet.config.time_cond_proj_dim
|
309 |
+
).to(device=device, dtype=latents.dtype)
|
310 |
+
|
311 |
+
self.pipe._num_timesteps = len(timesteps)
|
312 |
+
for i, t in enumerate(timesteps):
|
313 |
+
# Set the right starting latents
|
314 |
+
# Write latents out and skip
|
315 |
+
if i < idx_start:
|
316 |
+
list_latents_out.append(None)
|
317 |
+
continue
|
318 |
+
elif i == idx_start:
|
319 |
+
latents = latents_start.clone()
|
320 |
+
|
321 |
+
# Mix latents for crossfeeding
|
322 |
+
if i > 0 and list_mixing_coeffs[i] > 0:
|
323 |
+
latents_mixtarget = list_latents_mixing[i - 1].clone()
|
324 |
+
latents = interpolate_spherical(latents, latents_mixtarget, list_mixing_coeffs[i])
|
325 |
+
|
326 |
+
|
327 |
+
# expand the latents if we are doing classifier free guidance
|
328 |
+
latent_model_input = torch.cat([latents] * 2) if self.pipe.do_classifier_free_guidance else latents
|
329 |
+
|
330 |
+
latent_model_input = self.pipe.scheduler.scale_model_input(latent_model_input, t)
|
331 |
+
|
332 |
+
# predict the noise residual
|
333 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
334 |
+
if ip_adapter_image is not None:
|
335 |
+
added_cond_kwargs["image_embeds"] = image_embeds
|
336 |
+
noise_pred = self.pipe.unet(
|
337 |
+
latent_model_input,
|
338 |
+
t,
|
339 |
+
encoder_hidden_states=prompt_embeds,
|
340 |
+
timestep_cond=timestep_cond,
|
341 |
+
cross_attention_kwargs=self.pipe.cross_attention_kwargs,
|
342 |
+
added_cond_kwargs=added_cond_kwargs,
|
343 |
+
return_dict=False,
|
344 |
+
)[0]
|
345 |
+
|
346 |
+
# perform guidance
|
347 |
+
if self.pipe.do_classifier_free_guidance:
|
348 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
349 |
+
noise_pred = noise_pred_uncond + self.pipe.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
350 |
+
|
351 |
+
if self.pipe.do_classifier_free_guidance and self.pipe.guidance_rescale > 0.0:
|
352 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
353 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.pipe.guidance_rescale)
|
354 |
+
|
355 |
+
# compute the previous noisy sample x_t -> x_t-1
|
356 |
+
latents = self.pipe.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
357 |
+
|
358 |
+
# Append latents
|
359 |
+
list_latents_out.append(latents.clone())
|
360 |
+
|
361 |
+
|
362 |
+
|
363 |
+
if return_image:
|
364 |
+
return self.latent2image(latents)
|
365 |
+
else:
|
366 |
+
return list_latents_out
|
367 |
+
|
368 |
+
|
369 |
+
|
370 |
+
#%%
|
371 |
+
if __name__ == "__main__":
|
372 |
+
from PIL import Image
|
373 |
+
from diffusers import AutoencoderTiny
|
374 |
+
# pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
375 |
+
pretrained_model_name_or_path = "stabilityai/sdxl-turbo"
|
376 |
+
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16, variant="fp16")
|
377 |
+
pipe.to("cuda")
|
378 |
+
#%
|
379 |
+
# pipe.vae = AutoencoderTiny.from_pretrained('madebyollin/taesdxl', torch_device='cuda', torch_dtype=torch.float16)
|
380 |
+
# pipe.vae = pipe.vae.cuda()
|
381 |
+
#%% resanity
|
382 |
+
import time
|
383 |
+
self = DiffusersHolder(pipe)
|
384 |
+
prompt1 = "photo of underwater landscape, fish, und the sea, incredible detail, high resolution"
|
385 |
+
negative_prompt = "blurry, ugly, pale"
|
386 |
+
num_inference_steps = 4
|
387 |
+
guidance_scale = 0
|
388 |
+
|
389 |
+
self.set_num_inference_steps(num_inference_steps)
|
390 |
+
self.guidance_scale = guidance_scale
|
391 |
+
|
392 |
+
prefix='turbo'
|
393 |
+
for i in range(10):
|
394 |
+
self.set_negative_prompt(negative_prompt)
|
395 |
+
|
396 |
+
text_embeddings = self.get_text_embedding(prompt1)
|
397 |
+
latents_start = self.get_noise(np.random.randint(111111))
|
398 |
+
|
399 |
+
t0 = time.time()
|
400 |
+
|
401 |
+
# img_refx = self.pipe(prompt=prompt1, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale)[0]
|
402 |
+
|
403 |
+
img_refx = self.run_diffusion_sd_xl(text_embeddings=text_embeddings, latents_start=latents_start, return_image=False)
|
404 |
+
|
405 |
+
dt_ref = time.time() - t0
|
406 |
+
img_refx.save(f"x_{prefix}_{i}.jpg")
|
407 |
+
|
408 |
+
|
409 |
+
|
410 |
+
|
411 |
+
|
412 |
+
# xxx
|
413 |
+
|
414 |
+
# self.set_negative_prompt(negative_prompt)
|
415 |
+
# self.set_num_inference_steps(num_inference_steps)
|
416 |
+
# text_embeddings1 = self.get_text_embedding(prompt1)
|
417 |
+
# prompt_embeds1, negative_prompt_embeds1, pooled_prompt_embeds1, negative_pooled_prompt_embeds1 = text_embeddings1
|
418 |
+
# latents_start = self.get_noise(420)
|
419 |
+
# t0 = time.time()
|
420 |
+
# img_dh = self.run_diffusion_sd_xl_resanity(text_embeddings1, latents_start, idx_start=0, return_image=True)
|
421 |
+
# dt_dh = time.time() - t0
|
422 |
+
|
423 |
+
|
424 |
+
|
425 |
+
|
426 |
+
# xxxx
|
427 |
+
# #%%
|
428 |
+
|
429 |
+
# self = DiffusersHolder(pipe)
|
430 |
+
# num_inference_steps = 4
|
431 |
+
# self.set_num_inference_steps(num_inference_steps)
|
432 |
+
# latents_start = self.get_noise(420)
|
433 |
+
# guidance_scale = 0
|
434 |
+
# self.guidance_scale = 0
|
435 |
+
|
436 |
+
# #% get embeddings1
|
437 |
+
# prompt1 = "Photo of a colorful landscape with a blue sky with clouds"
|
438 |
+
# text_embeddings1 = self.get_text_embedding(prompt1)
|
439 |
+
# prompt_embeds1, negative_prompt_embeds1, pooled_prompt_embeds1, negative_pooled_prompt_embeds1 = text_embeddings1
|
440 |
+
|
441 |
+
# #% get embeddings2
|
442 |
+
# prompt2 = "Photo of a tree"
|
443 |
+
# text_embeddings2 = self.get_text_embedding(prompt2)
|
444 |
+
# prompt_embeds2, negative_prompt_embeds2, pooled_prompt_embeds2, negative_pooled_prompt_embeds2 = text_embeddings2
|
445 |
+
|
446 |
+
# latents1 = self.run_diffusion_sd_xl(text_embeddings1, latents_start, idx_start=0, return_image=False)
|
447 |
+
|
448 |
+
# img1 = self.run_diffusion_sd_xl(text_embeddings1, latents_start, idx_start=0, return_image=True)
|
449 |
+
# img1B = self.run_diffusion_sd_xl(text_embeddings1, latents_start, idx_start=0, return_image=True)
|
450 |
+
|
451 |
+
|
452 |
+
|
453 |
+
# # latents2 = self.run_diffusion_sd_xl(text_embeddings2, latents_start, idx_start=0, return_image=False)
|
454 |
+
|
455 |
+
|
456 |
+
# # # check if brings same image if restarted
|
457 |
+
# # img1_return = self.run_diffusion_sd_xl(text_embeddings1, latents1[idx_mix-1], idx_start=idx_start, return_image=True)
|
458 |
+
|
459 |
+
# # mix latents
|
460 |
+
# #%%
|
461 |
+
# idx_mix = 2
|
462 |
+
# fract=0.8
|
463 |
+
# latents_start_mixed = interpolate_spherical(latents1[idx_mix-1], latents2[idx_mix-1], fract)
|
464 |
+
# prompt_embeds = interpolate_spherical(prompt_embeds1, prompt_embeds2, fract)
|
465 |
+
# pooled_prompt_embeds = interpolate_spherical(pooled_prompt_embeds1, pooled_prompt_embeds2, fract)
|
466 |
+
# negative_prompt_embeds = negative_prompt_embeds1
|
467 |
+
# negative_pooled_prompt_embeds = negative_pooled_prompt_embeds1
|
468 |
+
# text_embeddings_mix = [prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds]
|
469 |
+
|
470 |
+
# self.run_diffusion_sd_xl(text_embeddings_mix, latents_start_mixed, idx_start=idx_start, return_image=True)
|
471 |
+
|
472 |
+
|
473 |
+
|
474 |
+
|
latentblending/gradio_ui.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
torch.backends.cudnn.benchmark = False
|
4 |
+
torch.set_grad_enabled(False)
|
5 |
+
import numpy as np
|
6 |
+
import warnings
|
7 |
+
warnings.filterwarnings('ignore')
|
8 |
+
from tqdm.auto import tqdm
|
9 |
+
from PIL import Image
|
10 |
+
import gradio as gr
|
11 |
+
import shutil
|
12 |
+
import uuid
|
13 |
+
from diffusers import AutoPipelineForText2Image
|
14 |
+
from latentblending.blending_engine import BlendingEngine
|
15 |
+
import datetime
|
16 |
+
|
17 |
+
warnings.filterwarnings('ignore')
|
18 |
+
torch.set_grad_enabled(False)
|
19 |
+
torch.backends.cudnn.benchmark = False
|
20 |
+
import json
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
class BlendingFrontend():
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
be,
|
28 |
+
share=False):
|
29 |
+
r"""
|
30 |
+
Gradio Helper Class to collect UI data and start latent blending.
|
31 |
+
Args:
|
32 |
+
be:
|
33 |
+
Blendingengine
|
34 |
+
share: bool
|
35 |
+
Set true to get a shareable gradio link (e.g. for running a remote server)
|
36 |
+
"""
|
37 |
+
self.be = be
|
38 |
+
self.share = share
|
39 |
+
|
40 |
+
# UI Defaults
|
41 |
+
self.seed1 = 420
|
42 |
+
self.seed2 = 420
|
43 |
+
self.prompt1 = ""
|
44 |
+
self.prompt2 = ""
|
45 |
+
self.negative_prompt = ""
|
46 |
+
|
47 |
+
# Vars
|
48 |
+
self.prompt = None
|
49 |
+
self.negative_prompt = None
|
50 |
+
self.list_seeds = []
|
51 |
+
self.idx_movie = 0
|
52 |
+
self.data = []
|
53 |
+
|
54 |
+
def take_image0(self):
|
55 |
+
return self.take_image(0)
|
56 |
+
|
57 |
+
def take_image1(self):
|
58 |
+
return self.take_image(1)
|
59 |
+
|
60 |
+
def take_image2(self):
|
61 |
+
return self.take_image(2)
|
62 |
+
|
63 |
+
def take_image3(self):
|
64 |
+
return self.take_image(3)
|
65 |
+
|
66 |
+
|
67 |
+
def take_image(self, id_img):
|
68 |
+
if self.prompt is None:
|
69 |
+
print("Cannot take because no prompt was set!")
|
70 |
+
return [None, None, None, None, ""]
|
71 |
+
if self.idx_movie == 0:
|
72 |
+
current_time = datetime.datetime.now()
|
73 |
+
self.fp_out = "movie_" + current_time.strftime("%y%m%d_%H%M") + ".json"
|
74 |
+
self.data.append({"settings": "sdxl", "width": bf.be.dh.width_img, "height": self.be.dh.height_img, "num_inference_steps": self.be.dh.num_inference_steps})
|
75 |
+
|
76 |
+
seed = self.list_seeds[id_img]
|
77 |
+
|
78 |
+
self.data.append({"iteration": self.idx_movie, "seed": seed, "prompt": self.prompt, "negative_prompt": self.negative_prompt})
|
79 |
+
|
80 |
+
# Write the data list to a JSON file
|
81 |
+
with open(self.fp_out, 'w') as f:
|
82 |
+
json.dump(self.data, f, indent=4)
|
83 |
+
|
84 |
+
self.idx_movie += 1
|
85 |
+
self.prompt = None
|
86 |
+
return [None, None, None, None, ""]
|
87 |
+
|
88 |
+
|
89 |
+
def compute_imgs(self, prompt, negative_prompt):
|
90 |
+
self.prompt = prompt
|
91 |
+
self.negative_prompt = negative_prompt
|
92 |
+
self.be.set_prompt1(prompt)
|
93 |
+
self.be.set_prompt2(prompt)
|
94 |
+
self.be.set_negative_prompt(negative_prompt)
|
95 |
+
self.list_seeds = []
|
96 |
+
self.list_images = []
|
97 |
+
for i in range(4):
|
98 |
+
seed = np.random.randint(0, 1000000000)
|
99 |
+
self.be.seed1 = seed
|
100 |
+
self.list_seeds.append(seed)
|
101 |
+
img = self.be.compute_latents1(return_image=True)
|
102 |
+
self.list_images.append(img)
|
103 |
+
return self.list_images
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
if __name__ == "__main__":
|
109 |
+
|
110 |
+
width = 786
|
111 |
+
height = 1024
|
112 |
+
num_inference_steps = 4
|
113 |
+
|
114 |
+
pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16")
|
115 |
+
# pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16")
|
116 |
+
pipe.to("cuda")
|
117 |
+
|
118 |
+
be = BlendingEngine(pipe)
|
119 |
+
be.set_dimensions((width, height))
|
120 |
+
be.set_num_inference_steps(num_inference_steps)
|
121 |
+
|
122 |
+
bf = BlendingFrontend(be)
|
123 |
+
|
124 |
+
with gr.Blocks() as demo:
|
125 |
+
|
126 |
+
with gr.Row():
|
127 |
+
prompt = gr.Textbox(label="prompt")
|
128 |
+
negative_prompt = gr.Textbox(label="negative prompt")
|
129 |
+
|
130 |
+
with gr.Row():
|
131 |
+
b_compute = gr.Button('compute new images', variant='primary')
|
132 |
+
|
133 |
+
with gr.Row():
|
134 |
+
with gr.Column():
|
135 |
+
img0 = gr.Image(label="seed1")
|
136 |
+
b_take0 = gr.Button('take', variant='primary')
|
137 |
+
with gr.Column():
|
138 |
+
img1 = gr.Image(label="seed2")
|
139 |
+
b_take1 = gr.Button('take', variant='primary')
|
140 |
+
with gr.Column():
|
141 |
+
img2 = gr.Image(label="seed3")
|
142 |
+
b_take2 = gr.Button('take', variant='primary')
|
143 |
+
with gr.Column():
|
144 |
+
img3 = gr.Image(label="seed4")
|
145 |
+
b_take3 = gr.Button('take', variant='primary')
|
146 |
+
|
147 |
+
b_compute.click(bf.compute_imgs, inputs=[prompt, negative_prompt], outputs=[img0, img1, img2, img3])
|
148 |
+
b_take0.click(bf.take_image0, outputs=[img0, img1, img2, img3, prompt])
|
149 |
+
b_take1.click(bf.take_image1, outputs=[img0, img1, img2, img3, prompt])
|
150 |
+
b_take2.click(bf.take_image2, outputs=[img0, img1, img2, img3, prompt])
|
151 |
+
b_take3.click(bf.take_image3, outputs=[img0, img1, img2, img3, prompt])
|
152 |
+
|
153 |
+
demo.launch(share=bf.share, inbrowser=True, inline=False, server_name="10.40.49.100")
|
utils.py → latentblending/utils.py
RENAMED
@@ -24,7 +24,7 @@ import datetime
|
|
24 |
from typing import List, Union
|
25 |
torch.set_grad_enabled(False)
|
26 |
import yaml
|
27 |
-
|
28 |
|
29 |
@torch.no_grad()
|
30 |
def interpolate_spherical(p0, p1, fract_mixing: float):
|
@@ -142,6 +142,8 @@ def add_frames_linear_interp(
|
|
142 |
if nmb_frames_missing < 1:
|
143 |
return list_imgs
|
144 |
|
|
|
|
|
145 |
list_imgs_float = [img.astype(np.float32) for img in list_imgs]
|
146 |
# Distribute missing frames, append nmb_frames_to_insert(i) frames for each frame
|
147 |
mean_nmb_frames_insert = nmb_frames_missing / nmb_frames_diff
|
|
|
24 |
from typing import List, Union
|
25 |
torch.set_grad_enabled(False)
|
26 |
import yaml
|
27 |
+
import PIL
|
28 |
|
29 |
@torch.no_grad()
|
30 |
def interpolate_spherical(p0, p1, fract_mixing: float):
|
|
|
142 |
if nmb_frames_missing < 1:
|
143 |
return list_imgs
|
144 |
|
145 |
+
if type(list_imgs[0]) == PIL.Image.Image:
|
146 |
+
list_imgs = [np.asarray(l) for l in list_imgs]
|
147 |
list_imgs_float = [img.astype(np.float32) for img in list_imgs]
|
148 |
# Distribute missing frames, append nmb_frames_to_insert(i) frames for each frame
|
149 |
mean_nmb_frames_insert = nmb_frames_missing / nmb_frames_diff
|
ldm/__pycache__/util.cpython-310.pyc
DELETED
Binary file (6.18 kB)
|
|
ldm/__pycache__/util.cpython-38.pyc
DELETED
Binary file (6.15 kB)
|
|
ldm/__pycache__/util.cpython-39.pyc
DELETED
Binary file (6.16 kB)
|
|
ldm/data/__init__.py
DELETED
File without changes
|
ldm/data/util.py
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
|
3 |
-
from ldm.modules.midas.api import load_midas_transform
|
4 |
-
|
5 |
-
|
6 |
-
class AddMiDaS(object):
|
7 |
-
def __init__(self, model_type):
|
8 |
-
super().__init__()
|
9 |
-
self.transform = load_midas_transform(model_type)
|
10 |
-
|
11 |
-
def pt2np(self, x):
|
12 |
-
x = ((x + 1.0) * .5).detach().cpu().numpy()
|
13 |
-
return x
|
14 |
-
|
15 |
-
def np2pt(self, x):
|
16 |
-
x = torch.from_numpy(x) * 2 - 1.
|
17 |
-
return x
|
18 |
-
|
19 |
-
def __call__(self, sample):
|
20 |
-
# sample['jpg'] is tensor hwc in [-1, 1] at this point
|
21 |
-
x = self.pt2np(sample['jpg'])
|
22 |
-
x = self.transform({"image": x})["image"]
|
23 |
-
sample['midas_in'] = x
|
24 |
-
return sample
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ldm/ldm
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
ldm
|
|
|
|
ldm/models/__pycache__/autoencoder.cpython-310.pyc
DELETED
Binary file (7.72 kB)
|
|
ldm/models/__pycache__/autoencoder.cpython-38.pyc
DELETED
Binary file (7.61 kB)
|
|
ldm/models/__pycache__/autoencoder.cpython-39.pyc
DELETED
Binary file (7.68 kB)
|
|
ldm/models/autoencoder.py
DELETED
@@ -1,219 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import pytorch_lightning as pl
|
3 |
-
import torch.nn.functional as F
|
4 |
-
from contextlib import contextmanager
|
5 |
-
|
6 |
-
from ldm.modules.diffusionmodules.model import Encoder, Decoder
|
7 |
-
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
8 |
-
|
9 |
-
from ldm.util import instantiate_from_config
|
10 |
-
from ldm.modules.ema import LitEma
|
11 |
-
|
12 |
-
|
13 |
-
class AutoencoderKL(pl.LightningModule):
|
14 |
-
def __init__(self,
|
15 |
-
ddconfig,
|
16 |
-
lossconfig,
|
17 |
-
embed_dim,
|
18 |
-
ckpt_path=None,
|
19 |
-
ignore_keys=[],
|
20 |
-
image_key="image",
|
21 |
-
colorize_nlabels=None,
|
22 |
-
monitor=None,
|
23 |
-
ema_decay=None,
|
24 |
-
learn_logvar=False
|
25 |
-
):
|
26 |
-
super().__init__()
|
27 |
-
self.learn_logvar = learn_logvar
|
28 |
-
self.image_key = image_key
|
29 |
-
self.encoder = Encoder(**ddconfig)
|
30 |
-
self.decoder = Decoder(**ddconfig)
|
31 |
-
self.loss = instantiate_from_config(lossconfig)
|
32 |
-
assert ddconfig["double_z"]
|
33 |
-
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
34 |
-
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
35 |
-
self.embed_dim = embed_dim
|
36 |
-
if colorize_nlabels is not None:
|
37 |
-
assert type(colorize_nlabels)==int
|
38 |
-
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
39 |
-
if monitor is not None:
|
40 |
-
self.monitor = monitor
|
41 |
-
|
42 |
-
self.use_ema = ema_decay is not None
|
43 |
-
if self.use_ema:
|
44 |
-
self.ema_decay = ema_decay
|
45 |
-
assert 0. < ema_decay < 1.
|
46 |
-
self.model_ema = LitEma(self, decay=ema_decay)
|
47 |
-
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
48 |
-
|
49 |
-
if ckpt_path is not None:
|
50 |
-
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
51 |
-
|
52 |
-
def init_from_ckpt(self, path, ignore_keys=list()):
|
53 |
-
sd = torch.load(path, map_location="cpu")["state_dict"]
|
54 |
-
keys = list(sd.keys())
|
55 |
-
for k in keys:
|
56 |
-
for ik in ignore_keys:
|
57 |
-
if k.startswith(ik):
|
58 |
-
print("Deleting key {} from state_dict.".format(k))
|
59 |
-
del sd[k]
|
60 |
-
self.load_state_dict(sd, strict=False)
|
61 |
-
print(f"Restored from {path}")
|
62 |
-
|
63 |
-
@contextmanager
|
64 |
-
def ema_scope(self, context=None):
|
65 |
-
if self.use_ema:
|
66 |
-
self.model_ema.store(self.parameters())
|
67 |
-
self.model_ema.copy_to(self)
|
68 |
-
if context is not None:
|
69 |
-
print(f"{context}: Switched to EMA weights")
|
70 |
-
try:
|
71 |
-
yield None
|
72 |
-
finally:
|
73 |
-
if self.use_ema:
|
74 |
-
self.model_ema.restore(self.parameters())
|
75 |
-
if context is not None:
|
76 |
-
print(f"{context}: Restored training weights")
|
77 |
-
|
78 |
-
def on_train_batch_end(self, *args, **kwargs):
|
79 |
-
if self.use_ema:
|
80 |
-
self.model_ema(self)
|
81 |
-
|
82 |
-
def encode(self, x):
|
83 |
-
h = self.encoder(x)
|
84 |
-
moments = self.quant_conv(h)
|
85 |
-
posterior = DiagonalGaussianDistribution(moments)
|
86 |
-
return posterior
|
87 |
-
|
88 |
-
def decode(self, z):
|
89 |
-
z = self.post_quant_conv(z)
|
90 |
-
dec = self.decoder(z)
|
91 |
-
return dec
|
92 |
-
|
93 |
-
def forward(self, input, sample_posterior=True):
|
94 |
-
posterior = self.encode(input)
|
95 |
-
if sample_posterior:
|
96 |
-
z = posterior.sample()
|
97 |
-
else:
|
98 |
-
z = posterior.mode()
|
99 |
-
dec = self.decode(z)
|
100 |
-
return dec, posterior
|
101 |
-
|
102 |
-
def get_input(self, batch, k):
|
103 |
-
x = batch[k]
|
104 |
-
if len(x.shape) == 3:
|
105 |
-
x = x[..., None]
|
106 |
-
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
107 |
-
return x
|
108 |
-
|
109 |
-
def training_step(self, batch, batch_idx, optimizer_idx):
|
110 |
-
inputs = self.get_input(batch, self.image_key)
|
111 |
-
reconstructions, posterior = self(inputs)
|
112 |
-
|
113 |
-
if optimizer_idx == 0:
|
114 |
-
# train encoder+decoder+logvar
|
115 |
-
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
116 |
-
last_layer=self.get_last_layer(), split="train")
|
117 |
-
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
118 |
-
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
119 |
-
return aeloss
|
120 |
-
|
121 |
-
if optimizer_idx == 1:
|
122 |
-
# train the discriminator
|
123 |
-
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
124 |
-
last_layer=self.get_last_layer(), split="train")
|
125 |
-
|
126 |
-
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
127 |
-
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
128 |
-
return discloss
|
129 |
-
|
130 |
-
def validation_step(self, batch, batch_idx):
|
131 |
-
log_dict = self._validation_step(batch, batch_idx)
|
132 |
-
with self.ema_scope():
|
133 |
-
log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema")
|
134 |
-
return log_dict
|
135 |
-
|
136 |
-
def _validation_step(self, batch, batch_idx, postfix=""):
|
137 |
-
inputs = self.get_input(batch, self.image_key)
|
138 |
-
reconstructions, posterior = self(inputs)
|
139 |
-
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
|
140 |
-
last_layer=self.get_last_layer(), split="val"+postfix)
|
141 |
-
|
142 |
-
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
|
143 |
-
last_layer=self.get_last_layer(), split="val"+postfix)
|
144 |
-
|
145 |
-
self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"])
|
146 |
-
self.log_dict(log_dict_ae)
|
147 |
-
self.log_dict(log_dict_disc)
|
148 |
-
return self.log_dict
|
149 |
-
|
150 |
-
def configure_optimizers(self):
|
151 |
-
lr = self.learning_rate
|
152 |
-
ae_params_list = list(self.encoder.parameters()) + list(self.decoder.parameters()) + list(
|
153 |
-
self.quant_conv.parameters()) + list(self.post_quant_conv.parameters())
|
154 |
-
if self.learn_logvar:
|
155 |
-
print(f"{self.__class__.__name__}: Learning logvar")
|
156 |
-
ae_params_list.append(self.loss.logvar)
|
157 |
-
opt_ae = torch.optim.Adam(ae_params_list,
|
158 |
-
lr=lr, betas=(0.5, 0.9))
|
159 |
-
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
160 |
-
lr=lr, betas=(0.5, 0.9))
|
161 |
-
return [opt_ae, opt_disc], []
|
162 |
-
|
163 |
-
def get_last_layer(self):
|
164 |
-
return self.decoder.conv_out.weight
|
165 |
-
|
166 |
-
@torch.no_grad()
|
167 |
-
def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs):
|
168 |
-
log = dict()
|
169 |
-
x = self.get_input(batch, self.image_key)
|
170 |
-
x = x.to(self.device)
|
171 |
-
if not only_inputs:
|
172 |
-
xrec, posterior = self(x)
|
173 |
-
if x.shape[1] > 3:
|
174 |
-
# colorize with random projection
|
175 |
-
assert xrec.shape[1] > 3
|
176 |
-
x = self.to_rgb(x)
|
177 |
-
xrec = self.to_rgb(xrec)
|
178 |
-
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
179 |
-
log["reconstructions"] = xrec
|
180 |
-
if log_ema or self.use_ema:
|
181 |
-
with self.ema_scope():
|
182 |
-
xrec_ema, posterior_ema = self(x)
|
183 |
-
if x.shape[1] > 3:
|
184 |
-
# colorize with random projection
|
185 |
-
assert xrec_ema.shape[1] > 3
|
186 |
-
xrec_ema = self.to_rgb(xrec_ema)
|
187 |
-
log["samples_ema"] = self.decode(torch.randn_like(posterior_ema.sample()))
|
188 |
-
log["reconstructions_ema"] = xrec_ema
|
189 |
-
log["inputs"] = x
|
190 |
-
return log
|
191 |
-
|
192 |
-
def to_rgb(self, x):
|
193 |
-
assert self.image_key == "segmentation"
|
194 |
-
if not hasattr(self, "colorize"):
|
195 |
-
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
196 |
-
x = F.conv2d(x, weight=self.colorize)
|
197 |
-
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
198 |
-
return x
|
199 |
-
|
200 |
-
|
201 |
-
class IdentityFirstStage(torch.nn.Module):
|
202 |
-
def __init__(self, *args, vq_interface=False, **kwargs):
|
203 |
-
self.vq_interface = vq_interface
|
204 |
-
super().__init__()
|
205 |
-
|
206 |
-
def encode(self, x, *args, **kwargs):
|
207 |
-
return x
|
208 |
-
|
209 |
-
def decode(self, x, *args, **kwargs):
|
210 |
-
return x
|
211 |
-
|
212 |
-
def quantize(self, x, *args, **kwargs):
|
213 |
-
if self.vq_interface:
|
214 |
-
return x, None, [None, None, None]
|
215 |
-
return x
|
216 |
-
|
217 |
-
def forward(self, x, *args, **kwargs):
|
218 |
-
return x
|
219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ldm/models/diffusion/__init__.py
DELETED
File without changes
|
ldm/models/diffusion/__pycache__/__init__.cpython-310.pyc
DELETED
Binary file (155 Bytes)
|
|
ldm/models/diffusion/__pycache__/__init__.cpython-38.pyc
DELETED
Binary file (153 Bytes)
|
|
ldm/models/diffusion/__pycache__/__init__.cpython-39.pyc
DELETED
Binary file (153 Bytes)
|
|
ldm/models/diffusion/__pycache__/ddim.cpython-310.pyc
DELETED
Binary file (9.33 kB)
|
|
ldm/models/diffusion/__pycache__/ddim.cpython-38.pyc
DELETED
Binary file (9.27 kB)
|
|
ldm/models/diffusion/__pycache__/ddim.cpython-39.pyc
DELETED
Binary file (9.19 kB)
|
|
ldm/models/diffusion/__pycache__/ddpm.cpython-310.pyc
DELETED
Binary file (52.8 kB)
|
|
ldm/models/diffusion/__pycache__/ddpm.cpython-38.pyc
DELETED
Binary file (53 kB)
|
|
ldm/models/diffusion/__pycache__/ddpm.cpython-39.pyc
DELETED
Binary file (53 kB)
|
|
ldm/models/diffusion/__pycache__/plms.cpython-39.pyc
DELETED
Binary file (7.46 kB)
|
|
ldm/models/diffusion/__pycache__/sampling_util.cpython-39.pyc
DELETED
Binary file (1.07 kB)
|
|
ldm/models/diffusion/ddim.py
DELETED
@@ -1,336 +0,0 @@
|
|
1 |
-
"""SAMPLING ONLY."""
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import numpy as np
|
5 |
-
from tqdm import tqdm
|
6 |
-
|
7 |
-
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
|
8 |
-
|
9 |
-
|
10 |
-
class DDIMSampler(object):
|
11 |
-
def __init__(self, model, schedule="linear", **kwargs):
|
12 |
-
super().__init__()
|
13 |
-
self.model = model
|
14 |
-
self.ddpm_num_timesteps = model.num_timesteps
|
15 |
-
self.schedule = schedule
|
16 |
-
|
17 |
-
def register_buffer(self, name, attr):
|
18 |
-
if type(attr) == torch.Tensor:
|
19 |
-
if attr.device != torch.device("cuda"):
|
20 |
-
attr = attr.to(torch.device("cuda"))
|
21 |
-
setattr(self, name, attr)
|
22 |
-
|
23 |
-
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
24 |
-
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
25 |
-
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
26 |
-
alphas_cumprod = self.model.alphas_cumprod
|
27 |
-
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
28 |
-
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
29 |
-
|
30 |
-
self.register_buffer('betas', to_torch(self.model.betas))
|
31 |
-
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
32 |
-
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
33 |
-
|
34 |
-
# calculations for diffusion q(x_t | x_{t-1}) and others
|
35 |
-
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
36 |
-
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
37 |
-
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
38 |
-
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
39 |
-
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
40 |
-
|
41 |
-
# ddim sampling parameters
|
42 |
-
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
43 |
-
ddim_timesteps=self.ddim_timesteps,
|
44 |
-
eta=ddim_eta,verbose=verbose)
|
45 |
-
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
46 |
-
self.register_buffer('ddim_alphas', ddim_alphas)
|
47 |
-
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
48 |
-
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
49 |
-
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
50 |
-
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
51 |
-
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
52 |
-
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
53 |
-
|
54 |
-
@torch.no_grad()
|
55 |
-
def sample(self,
|
56 |
-
S,
|
57 |
-
batch_size,
|
58 |
-
shape,
|
59 |
-
conditioning=None,
|
60 |
-
callback=None,
|
61 |
-
normals_sequence=None,
|
62 |
-
img_callback=None,
|
63 |
-
quantize_x0=False,
|
64 |
-
eta=0.,
|
65 |
-
mask=None,
|
66 |
-
x0=None,
|
67 |
-
temperature=1.,
|
68 |
-
noise_dropout=0.,
|
69 |
-
score_corrector=None,
|
70 |
-
corrector_kwargs=None,
|
71 |
-
verbose=True,
|
72 |
-
x_T=None,
|
73 |
-
log_every_t=100,
|
74 |
-
unconditional_guidance_scale=1.,
|
75 |
-
unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
76 |
-
dynamic_threshold=None,
|
77 |
-
ucg_schedule=None,
|
78 |
-
**kwargs
|
79 |
-
):
|
80 |
-
if conditioning is not None:
|
81 |
-
if isinstance(conditioning, dict):
|
82 |
-
ctmp = conditioning[list(conditioning.keys())[0]]
|
83 |
-
while isinstance(ctmp, list): ctmp = ctmp[0]
|
84 |
-
cbs = ctmp.shape[0]
|
85 |
-
if cbs != batch_size:
|
86 |
-
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
87 |
-
|
88 |
-
elif isinstance(conditioning, list):
|
89 |
-
for ctmp in conditioning:
|
90 |
-
if ctmp.shape[0] != batch_size:
|
91 |
-
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
92 |
-
|
93 |
-
else:
|
94 |
-
if conditioning.shape[0] != batch_size:
|
95 |
-
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
96 |
-
|
97 |
-
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
98 |
-
# sampling
|
99 |
-
C, H, W = shape
|
100 |
-
size = (batch_size, C, H, W)
|
101 |
-
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
102 |
-
|
103 |
-
samples, intermediates = self.ddim_sampling(conditioning, size,
|
104 |
-
callback=callback,
|
105 |
-
img_callback=img_callback,
|
106 |
-
quantize_denoised=quantize_x0,
|
107 |
-
mask=mask, x0=x0,
|
108 |
-
ddim_use_original_steps=False,
|
109 |
-
noise_dropout=noise_dropout,
|
110 |
-
temperature=temperature,
|
111 |
-
score_corrector=score_corrector,
|
112 |
-
corrector_kwargs=corrector_kwargs,
|
113 |
-
x_T=x_T,
|
114 |
-
log_every_t=log_every_t,
|
115 |
-
unconditional_guidance_scale=unconditional_guidance_scale,
|
116 |
-
unconditional_conditioning=unconditional_conditioning,
|
117 |
-
dynamic_threshold=dynamic_threshold,
|
118 |
-
ucg_schedule=ucg_schedule
|
119 |
-
)
|
120 |
-
return samples, intermediates
|
121 |
-
|
122 |
-
@torch.no_grad()
|
123 |
-
def ddim_sampling(self, cond, shape,
|
124 |
-
x_T=None, ddim_use_original_steps=False,
|
125 |
-
callback=None, timesteps=None, quantize_denoised=False,
|
126 |
-
mask=None, x0=None, img_callback=None, log_every_t=100,
|
127 |
-
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
128 |
-
unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
|
129 |
-
ucg_schedule=None):
|
130 |
-
device = self.model.betas.device
|
131 |
-
b = shape[0]
|
132 |
-
if x_T is None:
|
133 |
-
img = torch.randn(shape, device=device)
|
134 |
-
else:
|
135 |
-
img = x_T
|
136 |
-
|
137 |
-
if timesteps is None:
|
138 |
-
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
139 |
-
elif timesteps is not None and not ddim_use_original_steps:
|
140 |
-
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
141 |
-
timesteps = self.ddim_timesteps[:subset_end]
|
142 |
-
|
143 |
-
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
144 |
-
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
145 |
-
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
146 |
-
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
147 |
-
|
148 |
-
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
149 |
-
|
150 |
-
for i, step in enumerate(iterator):
|
151 |
-
index = total_steps - i - 1
|
152 |
-
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
153 |
-
|
154 |
-
if mask is not None:
|
155 |
-
assert x0 is not None
|
156 |
-
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
157 |
-
img = img_orig * mask + (1. - mask) * img
|
158 |
-
|
159 |
-
if ucg_schedule is not None:
|
160 |
-
assert len(ucg_schedule) == len(time_range)
|
161 |
-
unconditional_guidance_scale = ucg_schedule[i]
|
162 |
-
|
163 |
-
outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
164 |
-
quantize_denoised=quantize_denoised, temperature=temperature,
|
165 |
-
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
166 |
-
corrector_kwargs=corrector_kwargs,
|
167 |
-
unconditional_guidance_scale=unconditional_guidance_scale,
|
168 |
-
unconditional_conditioning=unconditional_conditioning,
|
169 |
-
dynamic_threshold=dynamic_threshold)
|
170 |
-
img, pred_x0 = outs
|
171 |
-
if callback: callback(i)
|
172 |
-
if img_callback: img_callback(pred_x0, i)
|
173 |
-
|
174 |
-
if index % log_every_t == 0 or index == total_steps - 1:
|
175 |
-
intermediates['x_inter'].append(img)
|
176 |
-
intermediates['pred_x0'].append(pred_x0)
|
177 |
-
|
178 |
-
return img, intermediates
|
179 |
-
|
180 |
-
@torch.no_grad()
|
181 |
-
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
182 |
-
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
183 |
-
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
184 |
-
dynamic_threshold=None):
|
185 |
-
b, *_, device = *x.shape, x.device
|
186 |
-
|
187 |
-
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
188 |
-
model_output = self.model.apply_model(x, t, c)
|
189 |
-
else:
|
190 |
-
x_in = torch.cat([x] * 2)
|
191 |
-
t_in = torch.cat([t] * 2)
|
192 |
-
if isinstance(c, dict):
|
193 |
-
assert isinstance(unconditional_conditioning, dict)
|
194 |
-
c_in = dict()
|
195 |
-
for k in c:
|
196 |
-
if isinstance(c[k], list):
|
197 |
-
c_in[k] = [torch.cat([
|
198 |
-
unconditional_conditioning[k][i],
|
199 |
-
c[k][i]]) for i in range(len(c[k]))]
|
200 |
-
else:
|
201 |
-
c_in[k] = torch.cat([
|
202 |
-
unconditional_conditioning[k],
|
203 |
-
c[k]])
|
204 |
-
elif isinstance(c, list):
|
205 |
-
c_in = list()
|
206 |
-
assert isinstance(unconditional_conditioning, list)
|
207 |
-
for i in range(len(c)):
|
208 |
-
c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
|
209 |
-
else:
|
210 |
-
c_in = torch.cat([unconditional_conditioning, c])
|
211 |
-
model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
212 |
-
model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
|
213 |
-
|
214 |
-
if self.model.parameterization == "v":
|
215 |
-
e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
|
216 |
-
else:
|
217 |
-
e_t = model_output
|
218 |
-
|
219 |
-
if score_corrector is not None:
|
220 |
-
assert self.model.parameterization == "eps", 'not implemented'
|
221 |
-
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
222 |
-
|
223 |
-
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
224 |
-
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
225 |
-
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
226 |
-
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
227 |
-
# select parameters corresponding to the currently considered timestep
|
228 |
-
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
229 |
-
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
230 |
-
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
231 |
-
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
232 |
-
|
233 |
-
# current prediction for x_0
|
234 |
-
if self.model.parameterization != "v":
|
235 |
-
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
236 |
-
else:
|
237 |
-
pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
|
238 |
-
|
239 |
-
if quantize_denoised:
|
240 |
-
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
241 |
-
|
242 |
-
if dynamic_threshold is not None:
|
243 |
-
raise NotImplementedError()
|
244 |
-
|
245 |
-
# direction pointing to x_t
|
246 |
-
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
247 |
-
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
248 |
-
if noise_dropout > 0.:
|
249 |
-
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
250 |
-
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
251 |
-
return x_prev, pred_x0
|
252 |
-
|
253 |
-
@torch.no_grad()
|
254 |
-
def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
|
255 |
-
unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
|
256 |
-
num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
|
257 |
-
|
258 |
-
assert t_enc <= num_reference_steps
|
259 |
-
num_steps = t_enc
|
260 |
-
|
261 |
-
if use_original_steps:
|
262 |
-
alphas_next = self.alphas_cumprod[:num_steps]
|
263 |
-
alphas = self.alphas_cumprod_prev[:num_steps]
|
264 |
-
else:
|
265 |
-
alphas_next = self.ddim_alphas[:num_steps]
|
266 |
-
alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
|
267 |
-
|
268 |
-
x_next = x0
|
269 |
-
intermediates = []
|
270 |
-
inter_steps = []
|
271 |
-
for i in tqdm(range(num_steps), desc='Encoding Image'):
|
272 |
-
t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
|
273 |
-
if unconditional_guidance_scale == 1.:
|
274 |
-
noise_pred = self.model.apply_model(x_next, t, c)
|
275 |
-
else:
|
276 |
-
assert unconditional_conditioning is not None
|
277 |
-
e_t_uncond, noise_pred = torch.chunk(
|
278 |
-
self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
|
279 |
-
torch.cat((unconditional_conditioning, c))), 2)
|
280 |
-
noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
|
281 |
-
|
282 |
-
xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
|
283 |
-
weighted_noise_pred = alphas_next[i].sqrt() * (
|
284 |
-
(1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
|
285 |
-
x_next = xt_weighted + weighted_noise_pred
|
286 |
-
if return_intermediates and i % (
|
287 |
-
num_steps // return_intermediates) == 0 and i < num_steps - 1:
|
288 |
-
intermediates.append(x_next)
|
289 |
-
inter_steps.append(i)
|
290 |
-
elif return_intermediates and i >= num_steps - 2:
|
291 |
-
intermediates.append(x_next)
|
292 |
-
inter_steps.append(i)
|
293 |
-
if callback: callback(i)
|
294 |
-
|
295 |
-
out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
|
296 |
-
if return_intermediates:
|
297 |
-
out.update({'intermediates': intermediates})
|
298 |
-
return x_next, out
|
299 |
-
|
300 |
-
@torch.no_grad()
|
301 |
-
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
302 |
-
# fast, but does not allow for exact reconstruction
|
303 |
-
# t serves as an index to gather the correct alphas
|
304 |
-
if use_original_steps:
|
305 |
-
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
306 |
-
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
307 |
-
else:
|
308 |
-
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
309 |
-
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
310 |
-
|
311 |
-
if noise is None:
|
312 |
-
noise = torch.randn_like(x0)
|
313 |
-
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
|
314 |
-
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
|
315 |
-
|
316 |
-
@torch.no_grad()
|
317 |
-
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
|
318 |
-
use_original_steps=False, callback=None):
|
319 |
-
|
320 |
-
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
321 |
-
timesteps = timesteps[:t_start]
|
322 |
-
|
323 |
-
time_range = np.flip(timesteps)
|
324 |
-
total_steps = timesteps.shape[0]
|
325 |
-
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
326 |
-
|
327 |
-
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
|
328 |
-
x_dec = x_latent
|
329 |
-
for i, step in enumerate(iterator):
|
330 |
-
index = total_steps - i - 1
|
331 |
-
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
|
332 |
-
x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
|
333 |
-
unconditional_guidance_scale=unconditional_guidance_scale,
|
334 |
-
unconditional_conditioning=unconditional_conditioning)
|
335 |
-
if callback: callback(i)
|
336 |
-
return x_dec
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ldm/models/diffusion/ddpm.py
DELETED
@@ -1,1795 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
wild mixture of
|
3 |
-
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
4 |
-
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
|
5 |
-
https://github.com/CompVis/taming-transformers
|
6 |
-
-- merci
|
7 |
-
"""
|
8 |
-
|
9 |
-
import torch
|
10 |
-
import torch.nn as nn
|
11 |
-
import numpy as np
|
12 |
-
import pytorch_lightning as pl
|
13 |
-
from torch.optim.lr_scheduler import LambdaLR
|
14 |
-
from einops import rearrange, repeat
|
15 |
-
from contextlib import contextmanager, nullcontext
|
16 |
-
from functools import partial
|
17 |
-
import itertools
|
18 |
-
from tqdm import tqdm
|
19 |
-
from torchvision.utils import make_grid
|
20 |
-
from pytorch_lightning.utilities.distributed import rank_zero_only
|
21 |
-
from omegaconf import ListConfig
|
22 |
-
|
23 |
-
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
|
24 |
-
from ldm.modules.ema import LitEma
|
25 |
-
from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
|
26 |
-
from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL
|
27 |
-
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
|
28 |
-
from ldm.models.diffusion.ddim import DDIMSampler
|
29 |
-
|
30 |
-
|
31 |
-
__conditioning_keys__ = {'concat': 'c_concat',
|
32 |
-
'crossattn': 'c_crossattn',
|
33 |
-
'adm': 'y'}
|
34 |
-
|
35 |
-
|
36 |
-
def disabled_train(self, mode=True):
|
37 |
-
"""Overwrite model.train with this function to make sure train/eval mode
|
38 |
-
does not change anymore."""
|
39 |
-
return self
|
40 |
-
|
41 |
-
|
42 |
-
def uniform_on_device(r1, r2, shape, device):
|
43 |
-
return (r1 - r2) * torch.rand(*shape, device=device) + r2
|
44 |
-
|
45 |
-
|
46 |
-
class DDPM(pl.LightningModule):
|
47 |
-
# classic DDPM with Gaussian diffusion, in image space
|
48 |
-
def __init__(self,
|
49 |
-
unet_config,
|
50 |
-
timesteps=1000,
|
51 |
-
beta_schedule="linear",
|
52 |
-
loss_type="l2",
|
53 |
-
ckpt_path=None,
|
54 |
-
ignore_keys=[],
|
55 |
-
load_only_unet=False,
|
56 |
-
monitor="val/loss",
|
57 |
-
use_ema=True,
|
58 |
-
first_stage_key="image",
|
59 |
-
image_size=256,
|
60 |
-
channels=3,
|
61 |
-
log_every_t=100,
|
62 |
-
clip_denoised=True,
|
63 |
-
linear_start=1e-4,
|
64 |
-
linear_end=2e-2,
|
65 |
-
cosine_s=8e-3,
|
66 |
-
given_betas=None,
|
67 |
-
original_elbo_weight=0.,
|
68 |
-
v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
|
69 |
-
l_simple_weight=1.,
|
70 |
-
conditioning_key=None,
|
71 |
-
parameterization="eps", # all assuming fixed variance schedules
|
72 |
-
scheduler_config=None,
|
73 |
-
use_positional_encodings=False,
|
74 |
-
learn_logvar=False,
|
75 |
-
logvar_init=0.,
|
76 |
-
make_it_fit=False,
|
77 |
-
ucg_training=None,
|
78 |
-
reset_ema=False,
|
79 |
-
reset_num_ema_updates=False,
|
80 |
-
):
|
81 |
-
super().__init__()
|
82 |
-
assert parameterization in ["eps", "x0", "v"], 'currently only supporting "eps" and "x0" and "v"'
|
83 |
-
self.parameterization = parameterization
|
84 |
-
print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
|
85 |
-
self.cond_stage_model = None
|
86 |
-
self.clip_denoised = clip_denoised
|
87 |
-
self.log_every_t = log_every_t
|
88 |
-
self.first_stage_key = first_stage_key
|
89 |
-
self.image_size = image_size # try conv?
|
90 |
-
self.channels = channels
|
91 |
-
self.use_positional_encodings = use_positional_encodings
|
92 |
-
self.model = DiffusionWrapper(unet_config, conditioning_key)
|
93 |
-
count_params(self.model, verbose=True)
|
94 |
-
self.use_ema = use_ema
|
95 |
-
if self.use_ema:
|
96 |
-
self.model_ema = LitEma(self.model)
|
97 |
-
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
98 |
-
|
99 |
-
self.use_scheduler = scheduler_config is not None
|
100 |
-
if self.use_scheduler:
|
101 |
-
self.scheduler_config = scheduler_config
|
102 |
-
|
103 |
-
self.v_posterior = v_posterior
|
104 |
-
self.original_elbo_weight = original_elbo_weight
|
105 |
-
self.l_simple_weight = l_simple_weight
|
106 |
-
|
107 |
-
if monitor is not None:
|
108 |
-
self.monitor = monitor
|
109 |
-
self.make_it_fit = make_it_fit
|
110 |
-
if reset_ema: assert exists(ckpt_path)
|
111 |
-
if ckpt_path is not None:
|
112 |
-
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
|
113 |
-
if reset_ema:
|
114 |
-
assert self.use_ema
|
115 |
-
print(f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
|
116 |
-
self.model_ema = LitEma(self.model)
|
117 |
-
if reset_num_ema_updates:
|
118 |
-
print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
|
119 |
-
assert self.use_ema
|
120 |
-
self.model_ema.reset_num_updates()
|
121 |
-
|
122 |
-
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
|
123 |
-
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
124 |
-
|
125 |
-
self.loss_type = loss_type
|
126 |
-
|
127 |
-
self.learn_logvar = learn_logvar
|
128 |
-
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
|
129 |
-
if self.learn_logvar:
|
130 |
-
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
131 |
-
|
132 |
-
self.ucg_training = ucg_training or dict()
|
133 |
-
if self.ucg_training:
|
134 |
-
self.ucg_prng = np.random.RandomState()
|
135 |
-
|
136 |
-
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
137 |
-
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
138 |
-
if exists(given_betas):
|
139 |
-
betas = given_betas
|
140 |
-
else:
|
141 |
-
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
142 |
-
cosine_s=cosine_s)
|
143 |
-
alphas = 1. - betas
|
144 |
-
alphas_cumprod = np.cumprod(alphas, axis=0)
|
145 |
-
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
146 |
-
|
147 |
-
timesteps, = betas.shape
|
148 |
-
self.num_timesteps = int(timesteps)
|
149 |
-
self.linear_start = linear_start
|
150 |
-
self.linear_end = linear_end
|
151 |
-
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
152 |
-
|
153 |
-
to_torch = partial(torch.tensor, dtype=torch.float32)
|
154 |
-
|
155 |
-
self.register_buffer('betas', to_torch(betas))
|
156 |
-
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
157 |
-
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
158 |
-
|
159 |
-
# calculations for diffusion q(x_t | x_{t-1}) and others
|
160 |
-
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
161 |
-
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
162 |
-
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
163 |
-
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
164 |
-
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
165 |
-
|
166 |
-
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
167 |
-
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
|
168 |
-
1. - alphas_cumprod) + self.v_posterior * betas
|
169 |
-
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
170 |
-
self.register_buffer('posterior_variance', to_torch(posterior_variance))
|
171 |
-
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
172 |
-
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
|
173 |
-
self.register_buffer('posterior_mean_coef1', to_torch(
|
174 |
-
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
|
175 |
-
self.register_buffer('posterior_mean_coef2', to_torch(
|
176 |
-
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
|
177 |
-
|
178 |
-
if self.parameterization == "eps":
|
179 |
-
lvlb_weights = self.betas ** 2 / (
|
180 |
-
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
|
181 |
-
elif self.parameterization == "x0":
|
182 |
-
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
|
183 |
-
elif self.parameterization == "v":
|
184 |
-
lvlb_weights = torch.ones_like(self.betas ** 2 / (
|
185 |
-
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)))
|
186 |
-
else:
|
187 |
-
raise NotImplementedError("mu not supported")
|
188 |
-
lvlb_weights[0] = lvlb_weights[1]
|
189 |
-
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
|
190 |
-
assert not torch.isnan(self.lvlb_weights).all()
|
191 |
-
|
192 |
-
@contextmanager
|
193 |
-
def ema_scope(self, context=None):
|
194 |
-
if self.use_ema:
|
195 |
-
self.model_ema.store(self.model.parameters())
|
196 |
-
self.model_ema.copy_to(self.model)
|
197 |
-
if context is not None:
|
198 |
-
print(f"{context}: Switched to EMA weights")
|
199 |
-
try:
|
200 |
-
yield None
|
201 |
-
finally:
|
202 |
-
if self.use_ema:
|
203 |
-
self.model_ema.restore(self.model.parameters())
|
204 |
-
if context is not None:
|
205 |
-
print(f"{context}: Restored training weights")
|
206 |
-
|
207 |
-
@torch.no_grad()
|
208 |
-
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
209 |
-
sd = torch.load(path, map_location="cpu")
|
210 |
-
if "state_dict" in list(sd.keys()):
|
211 |
-
sd = sd["state_dict"]
|
212 |
-
keys = list(sd.keys())
|
213 |
-
for k in keys:
|
214 |
-
for ik in ignore_keys:
|
215 |
-
if k.startswith(ik):
|
216 |
-
print("Deleting key {} from state_dict.".format(k))
|
217 |
-
del sd[k]
|
218 |
-
if self.make_it_fit:
|
219 |
-
n_params = len([name for name, _ in
|
220 |
-
itertools.chain(self.named_parameters(),
|
221 |
-
self.named_buffers())])
|
222 |
-
for name, param in tqdm(
|
223 |
-
itertools.chain(self.named_parameters(),
|
224 |
-
self.named_buffers()),
|
225 |
-
desc="Fitting old weights to new weights",
|
226 |
-
total=n_params
|
227 |
-
):
|
228 |
-
if not name in sd:
|
229 |
-
continue
|
230 |
-
old_shape = sd[name].shape
|
231 |
-
new_shape = param.shape
|
232 |
-
assert len(old_shape) == len(new_shape)
|
233 |
-
if len(new_shape) > 2:
|
234 |
-
# we only modify first two axes
|
235 |
-
assert new_shape[2:] == old_shape[2:]
|
236 |
-
# assumes first axis corresponds to output dim
|
237 |
-
if not new_shape == old_shape:
|
238 |
-
new_param = param.clone()
|
239 |
-
old_param = sd[name]
|
240 |
-
if len(new_shape) == 1:
|
241 |
-
for i in range(new_param.shape[0]):
|
242 |
-
new_param[i] = old_param[i % old_shape[0]]
|
243 |
-
elif len(new_shape) >= 2:
|
244 |
-
for i in range(new_param.shape[0]):
|
245 |
-
for j in range(new_param.shape[1]):
|
246 |
-
new_param[i, j] = old_param[i % old_shape[0], j % old_shape[1]]
|
247 |
-
|
248 |
-
n_used_old = torch.ones(old_shape[1])
|
249 |
-
for j in range(new_param.shape[1]):
|
250 |
-
n_used_old[j % old_shape[1]] += 1
|
251 |
-
n_used_new = torch.zeros(new_shape[1])
|
252 |
-
for j in range(new_param.shape[1]):
|
253 |
-
n_used_new[j] = n_used_old[j % old_shape[1]]
|
254 |
-
|
255 |
-
n_used_new = n_used_new[None, :]
|
256 |
-
while len(n_used_new.shape) < len(new_shape):
|
257 |
-
n_used_new = n_used_new.unsqueeze(-1)
|
258 |
-
new_param /= n_used_new
|
259 |
-
|
260 |
-
sd[name] = new_param
|
261 |
-
|
262 |
-
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
263 |
-
sd, strict=False)
|
264 |
-
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
265 |
-
if len(missing) > 0:
|
266 |
-
print(f"Missing Keys:\n {missing}")
|
267 |
-
if len(unexpected) > 0:
|
268 |
-
print(f"\nUnexpected Keys:\n {unexpected}")
|
269 |
-
|
270 |
-
def q_mean_variance(self, x_start, t):
|
271 |
-
"""
|
272 |
-
Get the distribution q(x_t | x_0).
|
273 |
-
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
274 |
-
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
275 |
-
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
276 |
-
"""
|
277 |
-
mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
|
278 |
-
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
279 |
-
log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
|
280 |
-
return mean, variance, log_variance
|
281 |
-
|
282 |
-
def predict_start_from_noise(self, x_t, t, noise):
|
283 |
-
return (
|
284 |
-
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
|
285 |
-
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
|
286 |
-
)
|
287 |
-
|
288 |
-
def predict_start_from_z_and_v(self, x_t, t, v):
|
289 |
-
# self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
290 |
-
# self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
291 |
-
return (
|
292 |
-
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t -
|
293 |
-
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
|
294 |
-
)
|
295 |
-
|
296 |
-
def predict_eps_from_z_and_v(self, x_t, t, v):
|
297 |
-
return (
|
298 |
-
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v +
|
299 |
-
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * x_t
|
300 |
-
)
|
301 |
-
|
302 |
-
def q_posterior(self, x_start, x_t, t):
|
303 |
-
posterior_mean = (
|
304 |
-
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
|
305 |
-
extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
306 |
-
)
|
307 |
-
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
308 |
-
posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
|
309 |
-
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
310 |
-
|
311 |
-
def p_mean_variance(self, x, t, clip_denoised: bool):
|
312 |
-
model_out = self.model(x, t)
|
313 |
-
if self.parameterization == "eps":
|
314 |
-
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
315 |
-
elif self.parameterization == "x0":
|
316 |
-
x_recon = model_out
|
317 |
-
if clip_denoised:
|
318 |
-
x_recon.clamp_(-1., 1.)
|
319 |
-
|
320 |
-
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
321 |
-
return model_mean, posterior_variance, posterior_log_variance
|
322 |
-
|
323 |
-
@torch.no_grad()
|
324 |
-
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
|
325 |
-
b, *_, device = *x.shape, x.device
|
326 |
-
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
|
327 |
-
noise = noise_like(x.shape, device, repeat_noise)
|
328 |
-
# no noise when t == 0
|
329 |
-
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
330 |
-
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
331 |
-
|
332 |
-
@torch.no_grad()
|
333 |
-
def p_sample_loop(self, shape, return_intermediates=False):
|
334 |
-
device = self.betas.device
|
335 |
-
b = shape[0]
|
336 |
-
img = torch.randn(shape, device=device)
|
337 |
-
intermediates = [img]
|
338 |
-
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
|
339 |
-
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
|
340 |
-
clip_denoised=self.clip_denoised)
|
341 |
-
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
|
342 |
-
intermediates.append(img)
|
343 |
-
if return_intermediates:
|
344 |
-
return img, intermediates
|
345 |
-
return img
|
346 |
-
|
347 |
-
@torch.no_grad()
|
348 |
-
def sample(self, batch_size=16, return_intermediates=False):
|
349 |
-
image_size = self.image_size
|
350 |
-
channels = self.channels
|
351 |
-
return self.p_sample_loop((batch_size, channels, image_size, image_size),
|
352 |
-
return_intermediates=return_intermediates)
|
353 |
-
|
354 |
-
def q_sample(self, x_start, t, noise=None):
|
355 |
-
noise = default(noise, lambda: torch.randn_like(x_start))
|
356 |
-
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
357 |
-
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
358 |
-
|
359 |
-
def get_v(self, x, noise, t):
|
360 |
-
return (
|
361 |
-
extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise -
|
362 |
-
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
|
363 |
-
)
|
364 |
-
|
365 |
-
def get_loss(self, pred, target, mean=True):
|
366 |
-
if self.loss_type == 'l1':
|
367 |
-
loss = (target - pred).abs()
|
368 |
-
if mean:
|
369 |
-
loss = loss.mean()
|
370 |
-
elif self.loss_type == 'l2':
|
371 |
-
if mean:
|
372 |
-
loss = torch.nn.functional.mse_loss(target, pred)
|
373 |
-
else:
|
374 |
-
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
|
375 |
-
else:
|
376 |
-
raise NotImplementedError("unknown loss type '{loss_type}'")
|
377 |
-
|
378 |
-
return loss
|
379 |
-
|
380 |
-
def p_losses(self, x_start, t, noise=None):
|
381 |
-
noise = default(noise, lambda: torch.randn_like(x_start))
|
382 |
-
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
383 |
-
model_out = self.model(x_noisy, t)
|
384 |
-
|
385 |
-
loss_dict = {}
|
386 |
-
if self.parameterization == "eps":
|
387 |
-
target = noise
|
388 |
-
elif self.parameterization == "x0":
|
389 |
-
target = x_start
|
390 |
-
elif self.parameterization == "v":
|
391 |
-
target = self.get_v(x_start, noise, t)
|
392 |
-
else:
|
393 |
-
raise NotImplementedError(f"Parameterization {self.parameterization} not yet supported")
|
394 |
-
|
395 |
-
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
|
396 |
-
|
397 |
-
log_prefix = 'train' if self.training else 'val'
|
398 |
-
|
399 |
-
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
|
400 |
-
loss_simple = loss.mean() * self.l_simple_weight
|
401 |
-
|
402 |
-
loss_vlb = (self.lvlb_weights[t] * loss).mean()
|
403 |
-
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
|
404 |
-
|
405 |
-
loss = loss_simple + self.original_elbo_weight * loss_vlb
|
406 |
-
|
407 |
-
loss_dict.update({f'{log_prefix}/loss': loss})
|
408 |
-
|
409 |
-
return loss, loss_dict
|
410 |
-
|
411 |
-
def forward(self, x, *args, **kwargs):
|
412 |
-
# b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
|
413 |
-
# assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
|
414 |
-
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
415 |
-
return self.p_losses(x, t, *args, **kwargs)
|
416 |
-
|
417 |
-
def get_input(self, batch, k):
|
418 |
-
x = batch[k]
|
419 |
-
if len(x.shape) == 3:
|
420 |
-
x = x[..., None]
|
421 |
-
x = rearrange(x, 'b h w c -> b c h w')
|
422 |
-
x = x.to(memory_format=torch.contiguous_format).float()
|
423 |
-
return x
|
424 |
-
|
425 |
-
def shared_step(self, batch):
|
426 |
-
x = self.get_input(batch, self.first_stage_key)
|
427 |
-
loss, loss_dict = self(x)
|
428 |
-
return loss, loss_dict
|
429 |
-
|
430 |
-
def training_step(self, batch, batch_idx):
|
431 |
-
for k in self.ucg_training:
|
432 |
-
p = self.ucg_training[k]["p"]
|
433 |
-
val = self.ucg_training[k]["val"]
|
434 |
-
if val is None:
|
435 |
-
val = ""
|
436 |
-
for i in range(len(batch[k])):
|
437 |
-
if self.ucg_prng.choice(2, p=[1 - p, p]):
|
438 |
-
batch[k][i] = val
|
439 |
-
|
440 |
-
loss, loss_dict = self.shared_step(batch)
|
441 |
-
|
442 |
-
self.log_dict(loss_dict, prog_bar=True,
|
443 |
-
logger=True, on_step=True, on_epoch=True)
|
444 |
-
|
445 |
-
self.log("global_step", self.global_step,
|
446 |
-
prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
447 |
-
|
448 |
-
if self.use_scheduler:
|
449 |
-
lr = self.optimizers().param_groups[0]['lr']
|
450 |
-
self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
451 |
-
|
452 |
-
return loss
|
453 |
-
|
454 |
-
@torch.no_grad()
|
455 |
-
def validation_step(self, batch, batch_idx):
|
456 |
-
_, loss_dict_no_ema = self.shared_step(batch)
|
457 |
-
with self.ema_scope():
|
458 |
-
_, loss_dict_ema = self.shared_step(batch)
|
459 |
-
loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
|
460 |
-
self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
461 |
-
self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
462 |
-
|
463 |
-
def on_train_batch_end(self, *args, **kwargs):
|
464 |
-
if self.use_ema:
|
465 |
-
self.model_ema(self.model)
|
466 |
-
|
467 |
-
def _get_rows_from_list(self, samples):
|
468 |
-
n_imgs_per_row = len(samples)
|
469 |
-
denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
|
470 |
-
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
471 |
-
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
472 |
-
return denoise_grid
|
473 |
-
|
474 |
-
@torch.no_grad()
|
475 |
-
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
|
476 |
-
log = dict()
|
477 |
-
x = self.get_input(batch, self.first_stage_key)
|
478 |
-
N = min(x.shape[0], N)
|
479 |
-
n_row = min(x.shape[0], n_row)
|
480 |
-
x = x.to(self.device)[:N]
|
481 |
-
log["inputs"] = x
|
482 |
-
|
483 |
-
# get diffusion row
|
484 |
-
diffusion_row = list()
|
485 |
-
x_start = x[:n_row]
|
486 |
-
|
487 |
-
for t in range(self.num_timesteps):
|
488 |
-
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
489 |
-
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
490 |
-
t = t.to(self.device).long()
|
491 |
-
noise = torch.randn_like(x_start)
|
492 |
-
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
493 |
-
diffusion_row.append(x_noisy)
|
494 |
-
|
495 |
-
log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
|
496 |
-
|
497 |
-
if sample:
|
498 |
-
# get denoise row
|
499 |
-
with self.ema_scope("Plotting"):
|
500 |
-
samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
|
501 |
-
|
502 |
-
log["samples"] = samples
|
503 |
-
log["denoise_row"] = self._get_rows_from_list(denoise_row)
|
504 |
-
|
505 |
-
if return_keys:
|
506 |
-
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
507 |
-
return log
|
508 |
-
else:
|
509 |
-
return {key: log[key] for key in return_keys}
|
510 |
-
return log
|
511 |
-
|
512 |
-
def configure_optimizers(self):
|
513 |
-
lr = self.learning_rate
|
514 |
-
params = list(self.model.parameters())
|
515 |
-
if self.learn_logvar:
|
516 |
-
params = params + [self.logvar]
|
517 |
-
opt = torch.optim.AdamW(params, lr=lr)
|
518 |
-
return opt
|
519 |
-
|
520 |
-
|
521 |
-
class LatentDiffusion(DDPM):
|
522 |
-
"""main class"""
|
523 |
-
|
524 |
-
def __init__(self,
|
525 |
-
first_stage_config,
|
526 |
-
cond_stage_config,
|
527 |
-
num_timesteps_cond=None,
|
528 |
-
cond_stage_key="image",
|
529 |
-
cond_stage_trainable=False,
|
530 |
-
concat_mode=True,
|
531 |
-
cond_stage_forward=None,
|
532 |
-
conditioning_key=None,
|
533 |
-
scale_factor=1.0,
|
534 |
-
scale_by_std=False,
|
535 |
-
force_null_conditioning=False,
|
536 |
-
*args, **kwargs):
|
537 |
-
self.force_null_conditioning = force_null_conditioning
|
538 |
-
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
539 |
-
self.scale_by_std = scale_by_std
|
540 |
-
assert self.num_timesteps_cond <= kwargs['timesteps']
|
541 |
-
# for backwards compatibility after implementation of DiffusionWrapper
|
542 |
-
if conditioning_key is None:
|
543 |
-
conditioning_key = 'concat' if concat_mode else 'crossattn'
|
544 |
-
if cond_stage_config == '__is_unconditional__' and not self.force_null_conditioning:
|
545 |
-
conditioning_key = None
|
546 |
-
ckpt_path = kwargs.pop("ckpt_path", None)
|
547 |
-
reset_ema = kwargs.pop("reset_ema", False)
|
548 |
-
reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False)
|
549 |
-
ignore_keys = kwargs.pop("ignore_keys", [])
|
550 |
-
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
|
551 |
-
self.concat_mode = concat_mode
|
552 |
-
self.cond_stage_trainable = cond_stage_trainable
|
553 |
-
self.cond_stage_key = cond_stage_key
|
554 |
-
try:
|
555 |
-
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
556 |
-
except:
|
557 |
-
self.num_downs = 0
|
558 |
-
if not scale_by_std:
|
559 |
-
self.scale_factor = scale_factor
|
560 |
-
else:
|
561 |
-
self.register_buffer('scale_factor', torch.tensor(scale_factor))
|
562 |
-
self.instantiate_first_stage(first_stage_config)
|
563 |
-
self.instantiate_cond_stage(cond_stage_config)
|
564 |
-
self.cond_stage_forward = cond_stage_forward
|
565 |
-
self.clip_denoised = False
|
566 |
-
self.bbox_tokenizer = None
|
567 |
-
|
568 |
-
self.restarted_from_ckpt = False
|
569 |
-
if ckpt_path is not None:
|
570 |
-
self.init_from_ckpt(ckpt_path, ignore_keys)
|
571 |
-
self.restarted_from_ckpt = True
|
572 |
-
if reset_ema:
|
573 |
-
assert self.use_ema
|
574 |
-
print(
|
575 |
-
f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
|
576 |
-
self.model_ema = LitEma(self.model)
|
577 |
-
if reset_num_ema_updates:
|
578 |
-
print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
|
579 |
-
assert self.use_ema
|
580 |
-
self.model_ema.reset_num_updates()
|
581 |
-
|
582 |
-
def make_cond_schedule(self, ):
|
583 |
-
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
|
584 |
-
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
|
585 |
-
self.cond_ids[:self.num_timesteps_cond] = ids
|
586 |
-
|
587 |
-
@rank_zero_only
|
588 |
-
@torch.no_grad()
|
589 |
-
def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
|
590 |
-
# only for very first batch
|
591 |
-
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
|
592 |
-
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
|
593 |
-
# set rescale weight to 1./std of encodings
|
594 |
-
print("### USING STD-RESCALING ###")
|
595 |
-
x = super().get_input(batch, self.first_stage_key)
|
596 |
-
x = x.to(self.device)
|
597 |
-
encoder_posterior = self.encode_first_stage(x)
|
598 |
-
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
599 |
-
del self.scale_factor
|
600 |
-
self.register_buffer('scale_factor', 1. / z.flatten().std())
|
601 |
-
print(f"setting self.scale_factor to {self.scale_factor}")
|
602 |
-
print("### USING STD-RESCALING ###")
|
603 |
-
|
604 |
-
def register_schedule(self,
|
605 |
-
given_betas=None, beta_schedule="linear", timesteps=1000,
|
606 |
-
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
607 |
-
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
|
608 |
-
|
609 |
-
self.shorten_cond_schedule = self.num_timesteps_cond > 1
|
610 |
-
if self.shorten_cond_schedule:
|
611 |
-
self.make_cond_schedule()
|
612 |
-
|
613 |
-
def instantiate_first_stage(self, config):
|
614 |
-
model = instantiate_from_config(config)
|
615 |
-
self.first_stage_model = model.eval()
|
616 |
-
self.first_stage_model.train = disabled_train
|
617 |
-
for param in self.first_stage_model.parameters():
|
618 |
-
param.requires_grad = False
|
619 |
-
|
620 |
-
def instantiate_cond_stage(self, config):
|
621 |
-
if not self.cond_stage_trainable:
|
622 |
-
if config == "__is_first_stage__":
|
623 |
-
print("Using first stage also as cond stage.")
|
624 |
-
self.cond_stage_model = self.first_stage_model
|
625 |
-
elif config == "__is_unconditional__":
|
626 |
-
print(f"Training {self.__class__.__name__} as an unconditional model.")
|
627 |
-
self.cond_stage_model = None
|
628 |
-
# self.be_unconditional = True
|
629 |
-
else:
|
630 |
-
model = instantiate_from_config(config)
|
631 |
-
self.cond_stage_model = model.eval()
|
632 |
-
self.cond_stage_model.train = disabled_train
|
633 |
-
for param in self.cond_stage_model.parameters():
|
634 |
-
param.requires_grad = False
|
635 |
-
else:
|
636 |
-
assert config != '__is_first_stage__'
|
637 |
-
assert config != '__is_unconditional__'
|
638 |
-
model = instantiate_from_config(config)
|
639 |
-
self.cond_stage_model = model
|
640 |
-
|
641 |
-
def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
|
642 |
-
denoise_row = []
|
643 |
-
for zd in tqdm(samples, desc=desc):
|
644 |
-
denoise_row.append(self.decode_first_stage(zd.to(self.device),
|
645 |
-
force_not_quantize=force_no_decoder_quantization))
|
646 |
-
n_imgs_per_row = len(denoise_row)
|
647 |
-
denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
|
648 |
-
denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
|
649 |
-
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
650 |
-
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
651 |
-
return denoise_grid
|
652 |
-
|
653 |
-
def get_first_stage_encoding(self, encoder_posterior):
|
654 |
-
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
655 |
-
z = encoder_posterior.sample()
|
656 |
-
elif isinstance(encoder_posterior, torch.Tensor):
|
657 |
-
z = encoder_posterior
|
658 |
-
else:
|
659 |
-
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
|
660 |
-
return self.scale_factor * z
|
661 |
-
|
662 |
-
def get_learned_conditioning(self, c):
|
663 |
-
if self.cond_stage_forward is None:
|
664 |
-
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
|
665 |
-
c = self.cond_stage_model.encode(c)
|
666 |
-
if isinstance(c, DiagonalGaussianDistribution):
|
667 |
-
c = c.mode()
|
668 |
-
else:
|
669 |
-
c = self.cond_stage_model(c)
|
670 |
-
else:
|
671 |
-
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
672 |
-
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
673 |
-
return c
|
674 |
-
|
675 |
-
def meshgrid(self, h, w):
|
676 |
-
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
|
677 |
-
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
|
678 |
-
|
679 |
-
arr = torch.cat([y, x], dim=-1)
|
680 |
-
return arr
|
681 |
-
|
682 |
-
def delta_border(self, h, w):
|
683 |
-
"""
|
684 |
-
:param h: height
|
685 |
-
:param w: width
|
686 |
-
:return: normalized distance to image border,
|
687 |
-
wtith min distance = 0 at border and max dist = 0.5 at image center
|
688 |
-
"""
|
689 |
-
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
|
690 |
-
arr = self.meshgrid(h, w) / lower_right_corner
|
691 |
-
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
|
692 |
-
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
|
693 |
-
edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
|
694 |
-
return edge_dist
|
695 |
-
|
696 |
-
def get_weighting(self, h, w, Ly, Lx, device):
|
697 |
-
weighting = self.delta_border(h, w)
|
698 |
-
weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
|
699 |
-
self.split_input_params["clip_max_weight"], )
|
700 |
-
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
|
701 |
-
|
702 |
-
if self.split_input_params["tie_braker"]:
|
703 |
-
L_weighting = self.delta_border(Ly, Lx)
|
704 |
-
L_weighting = torch.clip(L_weighting,
|
705 |
-
self.split_input_params["clip_min_tie_weight"],
|
706 |
-
self.split_input_params["clip_max_tie_weight"])
|
707 |
-
|
708 |
-
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
|
709 |
-
weighting = weighting * L_weighting
|
710 |
-
return weighting
|
711 |
-
|
712 |
-
def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
|
713 |
-
"""
|
714 |
-
:param x: img of size (bs, c, h, w)
|
715 |
-
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
|
716 |
-
"""
|
717 |
-
bs, nc, h, w = x.shape
|
718 |
-
|
719 |
-
# number of crops in image
|
720 |
-
Ly = (h - kernel_size[0]) // stride[0] + 1
|
721 |
-
Lx = (w - kernel_size[1]) // stride[1] + 1
|
722 |
-
|
723 |
-
if uf == 1 and df == 1:
|
724 |
-
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
725 |
-
unfold = torch.nn.Unfold(**fold_params)
|
726 |
-
|
727 |
-
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
|
728 |
-
|
729 |
-
weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
|
730 |
-
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
|
731 |
-
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
|
732 |
-
|
733 |
-
elif uf > 1 and df == 1:
|
734 |
-
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
735 |
-
unfold = torch.nn.Unfold(**fold_params)
|
736 |
-
|
737 |
-
fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
|
738 |
-
dilation=1, padding=0,
|
739 |
-
stride=(stride[0] * uf, stride[1] * uf))
|
740 |
-
fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
|
741 |
-
|
742 |
-
weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
|
743 |
-
normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
|
744 |
-
weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
|
745 |
-
|
746 |
-
elif df > 1 and uf == 1:
|
747 |
-
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
748 |
-
unfold = torch.nn.Unfold(**fold_params)
|
749 |
-
|
750 |
-
fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
|
751 |
-
dilation=1, padding=0,
|
752 |
-
stride=(stride[0] // df, stride[1] // df))
|
753 |
-
fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
|
754 |
-
|
755 |
-
weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
|
756 |
-
normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
|
757 |
-
weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
|
758 |
-
|
759 |
-
else:
|
760 |
-
raise NotImplementedError
|
761 |
-
|
762 |
-
return fold, unfold, normalization, weighting
|
763 |
-
|
764 |
-
@torch.no_grad()
|
765 |
-
def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
|
766 |
-
cond_key=None, return_original_cond=False, bs=None, return_x=False):
|
767 |
-
x = super().get_input(batch, k)
|
768 |
-
if bs is not None:
|
769 |
-
x = x[:bs]
|
770 |
-
x = x.to(self.device)
|
771 |
-
encoder_posterior = self.encode_first_stage(x)
|
772 |
-
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
773 |
-
|
774 |
-
if self.model.conditioning_key is not None and not self.force_null_conditioning:
|
775 |
-
if cond_key is None:
|
776 |
-
cond_key = self.cond_stage_key
|
777 |
-
if cond_key != self.first_stage_key:
|
778 |
-
if cond_key in ['caption', 'coordinates_bbox', "txt"]:
|
779 |
-
xc = batch[cond_key]
|
780 |
-
elif cond_key in ['class_label', 'cls']:
|
781 |
-
xc = batch
|
782 |
-
else:
|
783 |
-
xc = super().get_input(batch, cond_key).to(self.device)
|
784 |
-
else:
|
785 |
-
xc = x
|
786 |
-
if not self.cond_stage_trainable or force_c_encode:
|
787 |
-
if isinstance(xc, dict) or isinstance(xc, list):
|
788 |
-
c = self.get_learned_conditioning(xc)
|
789 |
-
else:
|
790 |
-
c = self.get_learned_conditioning(xc.to(self.device))
|
791 |
-
else:
|
792 |
-
c = xc
|
793 |
-
if bs is not None:
|
794 |
-
c = c[:bs]
|
795 |
-
|
796 |
-
if self.use_positional_encodings:
|
797 |
-
pos_x, pos_y = self.compute_latent_shifts(batch)
|
798 |
-
ckey = __conditioning_keys__[self.model.conditioning_key]
|
799 |
-
c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
|
800 |
-
|
801 |
-
else:
|
802 |
-
c = None
|
803 |
-
xc = None
|
804 |
-
if self.use_positional_encodings:
|
805 |
-
pos_x, pos_y = self.compute_latent_shifts(batch)
|
806 |
-
c = {'pos_x': pos_x, 'pos_y': pos_y}
|
807 |
-
out = [z, c]
|
808 |
-
if return_first_stage_outputs:
|
809 |
-
xrec = self.decode_first_stage(z)
|
810 |
-
out.extend([x, xrec])
|
811 |
-
if return_x:
|
812 |
-
out.extend([x])
|
813 |
-
if return_original_cond:
|
814 |
-
out.append(xc)
|
815 |
-
return out
|
816 |
-
|
817 |
-
@torch.no_grad()
|
818 |
-
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
819 |
-
if predict_cids:
|
820 |
-
if z.dim() == 4:
|
821 |
-
z = torch.argmax(z.exp(), dim=1).long()
|
822 |
-
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
823 |
-
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
824 |
-
|
825 |
-
z = 1. / self.scale_factor * z
|
826 |
-
return self.first_stage_model.decode(z)
|
827 |
-
|
828 |
-
@torch.no_grad()
|
829 |
-
def encode_first_stage(self, x):
|
830 |
-
return self.first_stage_model.encode(x)
|
831 |
-
|
832 |
-
def shared_step(self, batch, **kwargs):
|
833 |
-
x, c = self.get_input(batch, self.first_stage_key)
|
834 |
-
loss = self(x, c)
|
835 |
-
return loss
|
836 |
-
|
837 |
-
def forward(self, x, c, *args, **kwargs):
|
838 |
-
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
839 |
-
if self.model.conditioning_key is not None:
|
840 |
-
assert c is not None
|
841 |
-
if self.cond_stage_trainable:
|
842 |
-
c = self.get_learned_conditioning(c)
|
843 |
-
if self.shorten_cond_schedule: # TODO: drop this option
|
844 |
-
tc = self.cond_ids[t].to(self.device)
|
845 |
-
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
|
846 |
-
return self.p_losses(x, c, t, *args, **kwargs)
|
847 |
-
|
848 |
-
def apply_model(self, x_noisy, t, cond, return_ids=False):
|
849 |
-
if isinstance(cond, dict):
|
850 |
-
# hybrid case, cond is expected to be a dict
|
851 |
-
pass
|
852 |
-
else:
|
853 |
-
if not isinstance(cond, list):
|
854 |
-
cond = [cond]
|
855 |
-
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
|
856 |
-
cond = {key: cond}
|
857 |
-
|
858 |
-
x_recon = self.model(x_noisy, t, **cond)
|
859 |
-
|
860 |
-
if isinstance(x_recon, tuple) and not return_ids:
|
861 |
-
return x_recon[0]
|
862 |
-
else:
|
863 |
-
return x_recon
|
864 |
-
|
865 |
-
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
866 |
-
return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
|
867 |
-
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
868 |
-
|
869 |
-
def _prior_bpd(self, x_start):
|
870 |
-
"""
|
871 |
-
Get the prior KL term for the variational lower-bound, measured in
|
872 |
-
bits-per-dim.
|
873 |
-
This term can't be optimized, as it only depends on the encoder.
|
874 |
-
:param x_start: the [N x C x ...] tensor of inputs.
|
875 |
-
:return: a batch of [N] KL values (in bits), one per batch element.
|
876 |
-
"""
|
877 |
-
batch_size = x_start.shape[0]
|
878 |
-
t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
|
879 |
-
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
880 |
-
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
|
881 |
-
return mean_flat(kl_prior) / np.log(2.0)
|
882 |
-
|
883 |
-
def p_losses(self, x_start, cond, t, noise=None):
|
884 |
-
noise = default(noise, lambda: torch.randn_like(x_start))
|
885 |
-
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
886 |
-
model_output = self.apply_model(x_noisy, t, cond)
|
887 |
-
|
888 |
-
loss_dict = {}
|
889 |
-
prefix = 'train' if self.training else 'val'
|
890 |
-
|
891 |
-
if self.parameterization == "x0":
|
892 |
-
target = x_start
|
893 |
-
elif self.parameterization == "eps":
|
894 |
-
target = noise
|
895 |
-
elif self.parameterization == "v":
|
896 |
-
target = self.get_v(x_start, noise, t)
|
897 |
-
else:
|
898 |
-
raise NotImplementedError()
|
899 |
-
|
900 |
-
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
|
901 |
-
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
|
902 |
-
|
903 |
-
logvar_t = self.logvar[t].to(self.device)
|
904 |
-
loss = loss_simple / torch.exp(logvar_t) + logvar_t
|
905 |
-
# loss = loss_simple / torch.exp(self.logvar) + self.logvar
|
906 |
-
if self.learn_logvar:
|
907 |
-
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
|
908 |
-
loss_dict.update({'logvar': self.logvar.data.mean()})
|
909 |
-
|
910 |
-
loss = self.l_simple_weight * loss.mean()
|
911 |
-
|
912 |
-
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
|
913 |
-
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
|
914 |
-
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
|
915 |
-
loss += (self.original_elbo_weight * loss_vlb)
|
916 |
-
loss_dict.update({f'{prefix}/loss': loss})
|
917 |
-
|
918 |
-
return loss, loss_dict
|
919 |
-
|
920 |
-
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
|
921 |
-
return_x0=False, score_corrector=None, corrector_kwargs=None):
|
922 |
-
t_in = t
|
923 |
-
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
|
924 |
-
|
925 |
-
if score_corrector is not None:
|
926 |
-
assert self.parameterization == "eps"
|
927 |
-
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
|
928 |
-
|
929 |
-
if return_codebook_ids:
|
930 |
-
model_out, logits = model_out
|
931 |
-
|
932 |
-
if self.parameterization == "eps":
|
933 |
-
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
934 |
-
elif self.parameterization == "x0":
|
935 |
-
x_recon = model_out
|
936 |
-
else:
|
937 |
-
raise NotImplementedError()
|
938 |
-
|
939 |
-
if clip_denoised:
|
940 |
-
x_recon.clamp_(-1., 1.)
|
941 |
-
if quantize_denoised:
|
942 |
-
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
|
943 |
-
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
944 |
-
if return_codebook_ids:
|
945 |
-
return model_mean, posterior_variance, posterior_log_variance, logits
|
946 |
-
elif return_x0:
|
947 |
-
return model_mean, posterior_variance, posterior_log_variance, x_recon
|
948 |
-
else:
|
949 |
-
return model_mean, posterior_variance, posterior_log_variance
|
950 |
-
|
951 |
-
@torch.no_grad()
|
952 |
-
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
|
953 |
-
return_codebook_ids=False, quantize_denoised=False, return_x0=False,
|
954 |
-
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
|
955 |
-
b, *_, device = *x.shape, x.device
|
956 |
-
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
|
957 |
-
return_codebook_ids=return_codebook_ids,
|
958 |
-
quantize_denoised=quantize_denoised,
|
959 |
-
return_x0=return_x0,
|
960 |
-
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
961 |
-
if return_codebook_ids:
|
962 |
-
raise DeprecationWarning("Support dropped.")
|
963 |
-
model_mean, _, model_log_variance, logits = outputs
|
964 |
-
elif return_x0:
|
965 |
-
model_mean, _, model_log_variance, x0 = outputs
|
966 |
-
else:
|
967 |
-
model_mean, _, model_log_variance = outputs
|
968 |
-
|
969 |
-
noise = noise_like(x.shape, device, repeat_noise) * temperature
|
970 |
-
if noise_dropout > 0.:
|
971 |
-
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
972 |
-
# no noise when t == 0
|
973 |
-
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
974 |
-
|
975 |
-
if return_codebook_ids:
|
976 |
-
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
|
977 |
-
if return_x0:
|
978 |
-
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
|
979 |
-
else:
|
980 |
-
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
981 |
-
|
982 |
-
@torch.no_grad()
|
983 |
-
def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
|
984 |
-
img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
|
985 |
-
score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
|
986 |
-
log_every_t=None):
|
987 |
-
if not log_every_t:
|
988 |
-
log_every_t = self.log_every_t
|
989 |
-
timesteps = self.num_timesteps
|
990 |
-
if batch_size is not None:
|
991 |
-
b = batch_size if batch_size is not None else shape[0]
|
992 |
-
shape = [batch_size] + list(shape)
|
993 |
-
else:
|
994 |
-
b = batch_size = shape[0]
|
995 |
-
if x_T is None:
|
996 |
-
img = torch.randn(shape, device=self.device)
|
997 |
-
else:
|
998 |
-
img = x_T
|
999 |
-
intermediates = []
|
1000 |
-
if cond is not None:
|
1001 |
-
if isinstance(cond, dict):
|
1002 |
-
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
1003 |
-
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
1004 |
-
else:
|
1005 |
-
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
1006 |
-
|
1007 |
-
if start_T is not None:
|
1008 |
-
timesteps = min(timesteps, start_T)
|
1009 |
-
iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
|
1010 |
-
total=timesteps) if verbose else reversed(
|
1011 |
-
range(0, timesteps))
|
1012 |
-
if type(temperature) == float:
|
1013 |
-
temperature = [temperature] * timesteps
|
1014 |
-
|
1015 |
-
for i in iterator:
|
1016 |
-
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
|
1017 |
-
if self.shorten_cond_schedule:
|
1018 |
-
assert self.model.conditioning_key != 'hybrid'
|
1019 |
-
tc = self.cond_ids[ts].to(cond.device)
|
1020 |
-
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
1021 |
-
|
1022 |
-
img, x0_partial = self.p_sample(img, cond, ts,
|
1023 |
-
clip_denoised=self.clip_denoised,
|
1024 |
-
quantize_denoised=quantize_denoised, return_x0=True,
|
1025 |
-
temperature=temperature[i], noise_dropout=noise_dropout,
|
1026 |
-
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
1027 |
-
if mask is not None:
|
1028 |
-
assert x0 is not None
|
1029 |
-
img_orig = self.q_sample(x0, ts)
|
1030 |
-
img = img_orig * mask + (1. - mask) * img
|
1031 |
-
|
1032 |
-
if i % log_every_t == 0 or i == timesteps - 1:
|
1033 |
-
intermediates.append(x0_partial)
|
1034 |
-
if callback: callback(i)
|
1035 |
-
if img_callback: img_callback(img, i)
|
1036 |
-
return img, intermediates
|
1037 |
-
|
1038 |
-
@torch.no_grad()
|
1039 |
-
def p_sample_loop(self, cond, shape, return_intermediates=False,
|
1040 |
-
x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
|
1041 |
-
mask=None, x0=None, img_callback=None, start_T=None,
|
1042 |
-
log_every_t=None):
|
1043 |
-
|
1044 |
-
if not log_every_t:
|
1045 |
-
log_every_t = self.log_every_t
|
1046 |
-
device = self.betas.device
|
1047 |
-
b = shape[0]
|
1048 |
-
if x_T is None:
|
1049 |
-
img = torch.randn(shape, device=device)
|
1050 |
-
else:
|
1051 |
-
img = x_T
|
1052 |
-
|
1053 |
-
intermediates = [img]
|
1054 |
-
if timesteps is None:
|
1055 |
-
timesteps = self.num_timesteps
|
1056 |
-
|
1057 |
-
if start_T is not None:
|
1058 |
-
timesteps = min(timesteps, start_T)
|
1059 |
-
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
|
1060 |
-
range(0, timesteps))
|
1061 |
-
|
1062 |
-
if mask is not None:
|
1063 |
-
assert x0 is not None
|
1064 |
-
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
|
1065 |
-
|
1066 |
-
for i in iterator:
|
1067 |
-
ts = torch.full((b,), i, device=device, dtype=torch.long)
|
1068 |
-
if self.shorten_cond_schedule:
|
1069 |
-
assert self.model.conditioning_key != 'hybrid'
|
1070 |
-
tc = self.cond_ids[ts].to(cond.device)
|
1071 |
-
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
1072 |
-
|
1073 |
-
img = self.p_sample(img, cond, ts,
|
1074 |
-
clip_denoised=self.clip_denoised,
|
1075 |
-
quantize_denoised=quantize_denoised)
|
1076 |
-
if mask is not None:
|
1077 |
-
img_orig = self.q_sample(x0, ts)
|
1078 |
-
img = img_orig * mask + (1. - mask) * img
|
1079 |
-
|
1080 |
-
if i % log_every_t == 0 or i == timesteps - 1:
|
1081 |
-
intermediates.append(img)
|
1082 |
-
if callback: callback(i)
|
1083 |
-
if img_callback: img_callback(img, i)
|
1084 |
-
|
1085 |
-
if return_intermediates:
|
1086 |
-
return img, intermediates
|
1087 |
-
return img
|
1088 |
-
|
1089 |
-
@torch.no_grad()
|
1090 |
-
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
|
1091 |
-
verbose=True, timesteps=None, quantize_denoised=False,
|
1092 |
-
mask=None, x0=None, shape=None, **kwargs):
|
1093 |
-
if shape is None:
|
1094 |
-
shape = (batch_size, self.channels, self.image_size, self.image_size)
|
1095 |
-
if cond is not None:
|
1096 |
-
if isinstance(cond, dict):
|
1097 |
-
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
1098 |
-
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
1099 |
-
else:
|
1100 |
-
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
1101 |
-
return self.p_sample_loop(cond,
|
1102 |
-
shape,
|
1103 |
-
return_intermediates=return_intermediates, x_T=x_T,
|
1104 |
-
verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
|
1105 |
-
mask=mask, x0=x0)
|
1106 |
-
|
1107 |
-
@torch.no_grad()
|
1108 |
-
def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
|
1109 |
-
if ddim:
|
1110 |
-
ddim_sampler = DDIMSampler(self)
|
1111 |
-
shape = (self.channels, self.image_size, self.image_size)
|
1112 |
-
samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size,
|
1113 |
-
shape, cond, verbose=False, **kwargs)
|
1114 |
-
|
1115 |
-
else:
|
1116 |
-
samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
|
1117 |
-
return_intermediates=True, **kwargs)
|
1118 |
-
|
1119 |
-
return samples, intermediates
|
1120 |
-
|
1121 |
-
@torch.no_grad()
|
1122 |
-
def get_unconditional_conditioning(self, batch_size, null_label=None):
|
1123 |
-
if null_label is not None:
|
1124 |
-
xc = null_label
|
1125 |
-
if isinstance(xc, ListConfig):
|
1126 |
-
xc = list(xc)
|
1127 |
-
if isinstance(xc, dict) or isinstance(xc, list):
|
1128 |
-
c = self.get_learned_conditioning(xc)
|
1129 |
-
else:
|
1130 |
-
if hasattr(xc, "to"):
|
1131 |
-
xc = xc.to(self.device)
|
1132 |
-
c = self.get_learned_conditioning(xc)
|
1133 |
-
else:
|
1134 |
-
if self.cond_stage_key in ["class_label", "cls"]:
|
1135 |
-
xc = self.cond_stage_model.get_unconditional_conditioning(batch_size, device=self.device)
|
1136 |
-
return self.get_learned_conditioning(xc)
|
1137 |
-
else:
|
1138 |
-
raise NotImplementedError("todo")
|
1139 |
-
if isinstance(c, list): # in case the encoder gives us a list
|
1140 |
-
for i in range(len(c)):
|
1141 |
-
c[i] = repeat(c[i], '1 ... -> b ...', b=batch_size).to(self.device)
|
1142 |
-
else:
|
1143 |
-
c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device)
|
1144 |
-
return c
|
1145 |
-
|
1146 |
-
@torch.no_grad()
|
1147 |
-
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=50, ddim_eta=0., return_keys=None,
|
1148 |
-
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
1149 |
-
plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
|
1150 |
-
use_ema_scope=True,
|
1151 |
-
**kwargs):
|
1152 |
-
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
1153 |
-
use_ddim = ddim_steps is not None
|
1154 |
-
|
1155 |
-
log = dict()
|
1156 |
-
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
|
1157 |
-
return_first_stage_outputs=True,
|
1158 |
-
force_c_encode=True,
|
1159 |
-
return_original_cond=True,
|
1160 |
-
bs=N)
|
1161 |
-
N = min(x.shape[0], N)
|
1162 |
-
n_row = min(x.shape[0], n_row)
|
1163 |
-
log["inputs"] = x
|
1164 |
-
log["reconstruction"] = xrec
|
1165 |
-
if self.model.conditioning_key is not None:
|
1166 |
-
if hasattr(self.cond_stage_model, "decode"):
|
1167 |
-
xc = self.cond_stage_model.decode(c)
|
1168 |
-
log["conditioning"] = xc
|
1169 |
-
elif self.cond_stage_key in ["caption", "txt"]:
|
1170 |
-
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
|
1171 |
-
log["conditioning"] = xc
|
1172 |
-
elif self.cond_stage_key in ['class_label', "cls"]:
|
1173 |
-
try:
|
1174 |
-
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
|
1175 |
-
log['conditioning'] = xc
|
1176 |
-
except KeyError:
|
1177 |
-
# probably no "human_label" in batch
|
1178 |
-
pass
|
1179 |
-
elif isimage(xc):
|
1180 |
-
log["conditioning"] = xc
|
1181 |
-
if ismap(xc):
|
1182 |
-
log["original_conditioning"] = self.to_rgb(xc)
|
1183 |
-
|
1184 |
-
if plot_diffusion_rows:
|
1185 |
-
# get diffusion row
|
1186 |
-
diffusion_row = list()
|
1187 |
-
z_start = z[:n_row]
|
1188 |
-
for t in range(self.num_timesteps):
|
1189 |
-
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
1190 |
-
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
1191 |
-
t = t.to(self.device).long()
|
1192 |
-
noise = torch.randn_like(z_start)
|
1193 |
-
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
1194 |
-
diffusion_row.append(self.decode_first_stage(z_noisy))
|
1195 |
-
|
1196 |
-
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
1197 |
-
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
1198 |
-
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
1199 |
-
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
1200 |
-
log["diffusion_row"] = diffusion_grid
|
1201 |
-
|
1202 |
-
if sample:
|
1203 |
-
# get denoise row
|
1204 |
-
with ema_scope("Sampling"):
|
1205 |
-
samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
1206 |
-
ddim_steps=ddim_steps, eta=ddim_eta)
|
1207 |
-
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
1208 |
-
x_samples = self.decode_first_stage(samples)
|
1209 |
-
log["samples"] = x_samples
|
1210 |
-
if plot_denoise_rows:
|
1211 |
-
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
1212 |
-
log["denoise_row"] = denoise_grid
|
1213 |
-
|
1214 |
-
if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
|
1215 |
-
self.first_stage_model, IdentityFirstStage):
|
1216 |
-
# also display when quantizing x0 while sampling
|
1217 |
-
with ema_scope("Plotting Quantized Denoised"):
|
1218 |
-
samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
1219 |
-
ddim_steps=ddim_steps, eta=ddim_eta,
|
1220 |
-
quantize_denoised=True)
|
1221 |
-
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
|
1222 |
-
# quantize_denoised=True)
|
1223 |
-
x_samples = self.decode_first_stage(samples.to(self.device))
|
1224 |
-
log["samples_x0_quantized"] = x_samples
|
1225 |
-
|
1226 |
-
if unconditional_guidance_scale > 1.0:
|
1227 |
-
uc = self.get_unconditional_conditioning(N, unconditional_guidance_label)
|
1228 |
-
if self.model.conditioning_key == "crossattn-adm":
|
1229 |
-
uc = {"c_crossattn": [uc], "c_adm": c["c_adm"]}
|
1230 |
-
with ema_scope("Sampling with classifier-free guidance"):
|
1231 |
-
samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
1232 |
-
ddim_steps=ddim_steps, eta=ddim_eta,
|
1233 |
-
unconditional_guidance_scale=unconditional_guidance_scale,
|
1234 |
-
unconditional_conditioning=uc,
|
1235 |
-
)
|
1236 |
-
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
1237 |
-
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
1238 |
-
|
1239 |
-
if inpaint:
|
1240 |
-
# make a simple center square
|
1241 |
-
b, h, w = z.shape[0], z.shape[2], z.shape[3]
|
1242 |
-
mask = torch.ones(N, h, w).to(self.device)
|
1243 |
-
# zeros will be filled in
|
1244 |
-
mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
|
1245 |
-
mask = mask[:, None, ...]
|
1246 |
-
with ema_scope("Plotting Inpaint"):
|
1247 |
-
samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
|
1248 |
-
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
1249 |
-
x_samples = self.decode_first_stage(samples.to(self.device))
|
1250 |
-
log["samples_inpainting"] = x_samples
|
1251 |
-
log["mask"] = mask
|
1252 |
-
|
1253 |
-
# outpaint
|
1254 |
-
mask = 1. - mask
|
1255 |
-
with ema_scope("Plotting Outpaint"):
|
1256 |
-
samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
|
1257 |
-
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
1258 |
-
x_samples = self.decode_first_stage(samples.to(self.device))
|
1259 |
-
log["samples_outpainting"] = x_samples
|
1260 |
-
|
1261 |
-
if plot_progressive_rows:
|
1262 |
-
with ema_scope("Plotting Progressives"):
|
1263 |
-
img, progressives = self.progressive_denoising(c,
|
1264 |
-
shape=(self.channels, self.image_size, self.image_size),
|
1265 |
-
batch_size=N)
|
1266 |
-
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
|
1267 |
-
log["progressive_row"] = prog_row
|
1268 |
-
|
1269 |
-
if return_keys:
|
1270 |
-
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
1271 |
-
return log
|
1272 |
-
else:
|
1273 |
-
return {key: log[key] for key in return_keys}
|
1274 |
-
return log
|
1275 |
-
|
1276 |
-
def configure_optimizers(self):
|
1277 |
-
lr = self.learning_rate
|
1278 |
-
params = list(self.model.parameters())
|
1279 |
-
if self.cond_stage_trainable:
|
1280 |
-
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
|
1281 |
-
params = params + list(self.cond_stage_model.parameters())
|
1282 |
-
if self.learn_logvar:
|
1283 |
-
print('Diffusion model optimizing logvar')
|
1284 |
-
params.append(self.logvar)
|
1285 |
-
opt = torch.optim.AdamW(params, lr=lr)
|
1286 |
-
if self.use_scheduler:
|
1287 |
-
assert 'target' in self.scheduler_config
|
1288 |
-
scheduler = instantiate_from_config(self.scheduler_config)
|
1289 |
-
|
1290 |
-
print("Setting up LambdaLR scheduler...")
|
1291 |
-
scheduler = [
|
1292 |
-
{
|
1293 |
-
'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
|
1294 |
-
'interval': 'step',
|
1295 |
-
'frequency': 1
|
1296 |
-
}]
|
1297 |
-
return [opt], scheduler
|
1298 |
-
return opt
|
1299 |
-
|
1300 |
-
@torch.no_grad()
|
1301 |
-
def to_rgb(self, x):
|
1302 |
-
x = x.float()
|
1303 |
-
if not hasattr(self, "colorize"):
|
1304 |
-
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
|
1305 |
-
x = nn.functional.conv2d(x, weight=self.colorize)
|
1306 |
-
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
|
1307 |
-
return x
|
1308 |
-
|
1309 |
-
|
1310 |
-
class DiffusionWrapper(pl.LightningModule):
|
1311 |
-
def __init__(self, diff_model_config, conditioning_key):
|
1312 |
-
super().__init__()
|
1313 |
-
self.sequential_cross_attn = diff_model_config.pop("sequential_crossattn", False)
|
1314 |
-
self.diffusion_model = instantiate_from_config(diff_model_config)
|
1315 |
-
self.conditioning_key = conditioning_key
|
1316 |
-
assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'hybrid-adm', 'crossattn-adm']
|
1317 |
-
|
1318 |
-
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None):
|
1319 |
-
if self.conditioning_key is None:
|
1320 |
-
out = self.diffusion_model(x, t)
|
1321 |
-
elif self.conditioning_key == 'concat':
|
1322 |
-
xc = torch.cat([x] + c_concat, dim=1)
|
1323 |
-
out = self.diffusion_model(xc, t)
|
1324 |
-
elif self.conditioning_key == 'crossattn':
|
1325 |
-
if not self.sequential_cross_attn:
|
1326 |
-
cc = torch.cat(c_crossattn, 1)
|
1327 |
-
else:
|
1328 |
-
cc = c_crossattn
|
1329 |
-
out = self.diffusion_model(x, t, context=cc)
|
1330 |
-
elif self.conditioning_key == 'hybrid':
|
1331 |
-
xc = torch.cat([x] + c_concat, dim=1)
|
1332 |
-
cc = torch.cat(c_crossattn, 1)
|
1333 |
-
out = self.diffusion_model(xc, t, context=cc)
|
1334 |
-
elif self.conditioning_key == 'hybrid-adm':
|
1335 |
-
assert c_adm is not None
|
1336 |
-
xc = torch.cat([x] + c_concat, dim=1)
|
1337 |
-
cc = torch.cat(c_crossattn, 1)
|
1338 |
-
out = self.diffusion_model(xc, t, context=cc, y=c_adm)
|
1339 |
-
elif self.conditioning_key == 'crossattn-adm':
|
1340 |
-
assert c_adm is not None
|
1341 |
-
cc = torch.cat(c_crossattn, 1)
|
1342 |
-
out = self.diffusion_model(x, t, context=cc, y=c_adm)
|
1343 |
-
elif self.conditioning_key == 'adm':
|
1344 |
-
cc = c_crossattn[0]
|
1345 |
-
out = self.diffusion_model(x, t, y=cc)
|
1346 |
-
else:
|
1347 |
-
raise NotImplementedError()
|
1348 |
-
|
1349 |
-
return out
|
1350 |
-
|
1351 |
-
|
1352 |
-
class LatentUpscaleDiffusion(LatentDiffusion):
|
1353 |
-
def __init__(self, *args, low_scale_config, low_scale_key="LR", noise_level_key=None, **kwargs):
|
1354 |
-
super().__init__(*args, **kwargs)
|
1355 |
-
# assumes that neither the cond_stage nor the low_scale_model contain trainable params
|
1356 |
-
assert not self.cond_stage_trainable
|
1357 |
-
self.instantiate_low_stage(low_scale_config)
|
1358 |
-
self.low_scale_key = low_scale_key
|
1359 |
-
self.noise_level_key = noise_level_key
|
1360 |
-
|
1361 |
-
def instantiate_low_stage(self, config):
|
1362 |
-
model = instantiate_from_config(config)
|
1363 |
-
self.low_scale_model = model.eval()
|
1364 |
-
self.low_scale_model.train = disabled_train
|
1365 |
-
for param in self.low_scale_model.parameters():
|
1366 |
-
param.requires_grad = False
|
1367 |
-
|
1368 |
-
@torch.no_grad()
|
1369 |
-
def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
|
1370 |
-
if not log_mode:
|
1371 |
-
z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
|
1372 |
-
else:
|
1373 |
-
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
1374 |
-
force_c_encode=True, return_original_cond=True, bs=bs)
|
1375 |
-
x_low = batch[self.low_scale_key][:bs]
|
1376 |
-
x_low = rearrange(x_low, 'b h w c -> b c h w')
|
1377 |
-
x_low = x_low.to(memory_format=torch.contiguous_format).float()
|
1378 |
-
zx, noise_level = self.low_scale_model(x_low)
|
1379 |
-
if self.noise_level_key is not None:
|
1380 |
-
# get noise level from batch instead, e.g. when extracting a custom noise level for bsr
|
1381 |
-
raise NotImplementedError('TODO')
|
1382 |
-
|
1383 |
-
all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level}
|
1384 |
-
if log_mode:
|
1385 |
-
# TODO: maybe disable if too expensive
|
1386 |
-
x_low_rec = self.low_scale_model.decode(zx)
|
1387 |
-
return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level
|
1388 |
-
return z, all_conds
|
1389 |
-
|
1390 |
-
@torch.no_grad()
|
1391 |
-
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
1392 |
-
plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
|
1393 |
-
unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
|
1394 |
-
**kwargs):
|
1395 |
-
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
1396 |
-
use_ddim = ddim_steps is not None
|
1397 |
-
|
1398 |
-
log = dict()
|
1399 |
-
z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(batch, self.first_stage_key, bs=N,
|
1400 |
-
log_mode=True)
|
1401 |
-
N = min(x.shape[0], N)
|
1402 |
-
n_row = min(x.shape[0], n_row)
|
1403 |
-
log["inputs"] = x
|
1404 |
-
log["reconstruction"] = xrec
|
1405 |
-
log["x_lr"] = x_low
|
1406 |
-
log[f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"] = x_low_rec
|
1407 |
-
if self.model.conditioning_key is not None:
|
1408 |
-
if hasattr(self.cond_stage_model, "decode"):
|
1409 |
-
xc = self.cond_stage_model.decode(c)
|
1410 |
-
log["conditioning"] = xc
|
1411 |
-
elif self.cond_stage_key in ["caption", "txt"]:
|
1412 |
-
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
|
1413 |
-
log["conditioning"] = xc
|
1414 |
-
elif self.cond_stage_key in ['class_label', 'cls']:
|
1415 |
-
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
|
1416 |
-
log['conditioning'] = xc
|
1417 |
-
elif isimage(xc):
|
1418 |
-
log["conditioning"] = xc
|
1419 |
-
if ismap(xc):
|
1420 |
-
log["original_conditioning"] = self.to_rgb(xc)
|
1421 |
-
|
1422 |
-
if plot_diffusion_rows:
|
1423 |
-
# get diffusion row
|
1424 |
-
diffusion_row = list()
|
1425 |
-
z_start = z[:n_row]
|
1426 |
-
for t in range(self.num_timesteps):
|
1427 |
-
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
1428 |
-
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
1429 |
-
t = t.to(self.device).long()
|
1430 |
-
noise = torch.randn_like(z_start)
|
1431 |
-
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
1432 |
-
diffusion_row.append(self.decode_first_stage(z_noisy))
|
1433 |
-
|
1434 |
-
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
1435 |
-
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
1436 |
-
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
1437 |
-
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
1438 |
-
log["diffusion_row"] = diffusion_grid
|
1439 |
-
|
1440 |
-
if sample:
|
1441 |
-
# get denoise row
|
1442 |
-
with ema_scope("Sampling"):
|
1443 |
-
samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
1444 |
-
ddim_steps=ddim_steps, eta=ddim_eta)
|
1445 |
-
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
1446 |
-
x_samples = self.decode_first_stage(samples)
|
1447 |
-
log["samples"] = x_samples
|
1448 |
-
if plot_denoise_rows:
|
1449 |
-
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
1450 |
-
log["denoise_row"] = denoise_grid
|
1451 |
-
|
1452 |
-
if unconditional_guidance_scale > 1.0:
|
1453 |
-
uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
|
1454 |
-
# TODO explore better "unconditional" choices for the other keys
|
1455 |
-
# maybe guide away from empty text label and highest noise level and maximally degraded zx?
|
1456 |
-
uc = dict()
|
1457 |
-
for k in c:
|
1458 |
-
if k == "c_crossattn":
|
1459 |
-
assert isinstance(c[k], list) and len(c[k]) == 1
|
1460 |
-
uc[k] = [uc_tmp]
|
1461 |
-
elif k == "c_adm": # todo: only run with text-based guidance?
|
1462 |
-
assert isinstance(c[k], torch.Tensor)
|
1463 |
-
#uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level
|
1464 |
-
uc[k] = c[k]
|
1465 |
-
elif isinstance(c[k], list):
|
1466 |
-
uc[k] = [c[k][i] for i in range(len(c[k]))]
|
1467 |
-
else:
|
1468 |
-
uc[k] = c[k]
|
1469 |
-
|
1470 |
-
with ema_scope("Sampling with classifier-free guidance"):
|
1471 |
-
samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
1472 |
-
ddim_steps=ddim_steps, eta=ddim_eta,
|
1473 |
-
unconditional_guidance_scale=unconditional_guidance_scale,
|
1474 |
-
unconditional_conditioning=uc,
|
1475 |
-
)
|
1476 |
-
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
1477 |
-
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
1478 |
-
|
1479 |
-
if plot_progressive_rows:
|
1480 |
-
with ema_scope("Plotting Progressives"):
|
1481 |
-
img, progressives = self.progressive_denoising(c,
|
1482 |
-
shape=(self.channels, self.image_size, self.image_size),
|
1483 |
-
batch_size=N)
|
1484 |
-
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
|
1485 |
-
log["progressive_row"] = prog_row
|
1486 |
-
|
1487 |
-
return log
|
1488 |
-
|
1489 |
-
|
1490 |
-
class LatentFinetuneDiffusion(LatentDiffusion):
|
1491 |
-
"""
|
1492 |
-
Basis for different finetunas, such as inpainting or depth2image
|
1493 |
-
To disable finetuning mode, set finetune_keys to None
|
1494 |
-
"""
|
1495 |
-
|
1496 |
-
def __init__(self,
|
1497 |
-
concat_keys: tuple,
|
1498 |
-
finetune_keys=("model.diffusion_model.input_blocks.0.0.weight",
|
1499 |
-
"model_ema.diffusion_modelinput_blocks00weight"
|
1500 |
-
),
|
1501 |
-
keep_finetune_dims=4,
|
1502 |
-
# if model was trained without concat mode before and we would like to keep these channels
|
1503 |
-
c_concat_log_start=None, # to log reconstruction of c_concat codes
|
1504 |
-
c_concat_log_end=None,
|
1505 |
-
*args, **kwargs
|
1506 |
-
):
|
1507 |
-
ckpt_path = kwargs.pop("ckpt_path", None)
|
1508 |
-
ignore_keys = kwargs.pop("ignore_keys", list())
|
1509 |
-
super().__init__(*args, **kwargs)
|
1510 |
-
self.finetune_keys = finetune_keys
|
1511 |
-
self.concat_keys = concat_keys
|
1512 |
-
self.keep_dims = keep_finetune_dims
|
1513 |
-
self.c_concat_log_start = c_concat_log_start
|
1514 |
-
self.c_concat_log_end = c_concat_log_end
|
1515 |
-
if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
|
1516 |
-
if exists(ckpt_path):
|
1517 |
-
self.init_from_ckpt(ckpt_path, ignore_keys)
|
1518 |
-
|
1519 |
-
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
1520 |
-
sd = torch.load(path, map_location="cpu")
|
1521 |
-
if "state_dict" in list(sd.keys()):
|
1522 |
-
sd = sd["state_dict"]
|
1523 |
-
keys = list(sd.keys())
|
1524 |
-
for k in keys:
|
1525 |
-
for ik in ignore_keys:
|
1526 |
-
if k.startswith(ik):
|
1527 |
-
print("Deleting key {} from state_dict.".format(k))
|
1528 |
-
del sd[k]
|
1529 |
-
|
1530 |
-
# make it explicit, finetune by including extra input channels
|
1531 |
-
if exists(self.finetune_keys) and k in self.finetune_keys:
|
1532 |
-
new_entry = None
|
1533 |
-
for name, param in self.named_parameters():
|
1534 |
-
if name in self.finetune_keys:
|
1535 |
-
print(
|
1536 |
-
f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only")
|
1537 |
-
new_entry = torch.zeros_like(param) # zero init
|
1538 |
-
assert exists(new_entry), 'did not find matching parameter to modify'
|
1539 |
-
new_entry[:, :self.keep_dims, ...] = sd[k]
|
1540 |
-
sd[k] = new_entry
|
1541 |
-
|
1542 |
-
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
1543 |
-
sd, strict=False)
|
1544 |
-
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
1545 |
-
if len(missing) > 0:
|
1546 |
-
print(f"Missing Keys: {missing}")
|
1547 |
-
if len(unexpected) > 0:
|
1548 |
-
print(f"Unexpected Keys: {unexpected}")
|
1549 |
-
|
1550 |
-
@torch.no_grad()
|
1551 |
-
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
1552 |
-
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
1553 |
-
plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
|
1554 |
-
use_ema_scope=True,
|
1555 |
-
**kwargs):
|
1556 |
-
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
1557 |
-
use_ddim = ddim_steps is not None
|
1558 |
-
|
1559 |
-
log = dict()
|
1560 |
-
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True)
|
1561 |
-
c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
|
1562 |
-
N = min(x.shape[0], N)
|
1563 |
-
n_row = min(x.shape[0], n_row)
|
1564 |
-
log["inputs"] = x
|
1565 |
-
log["reconstruction"] = xrec
|
1566 |
-
if self.model.conditioning_key is not None:
|
1567 |
-
if hasattr(self.cond_stage_model, "decode"):
|
1568 |
-
xc = self.cond_stage_model.decode(c)
|
1569 |
-
log["conditioning"] = xc
|
1570 |
-
elif self.cond_stage_key in ["caption", "txt"]:
|
1571 |
-
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
|
1572 |
-
log["conditioning"] = xc
|
1573 |
-
elif self.cond_stage_key in ['class_label', 'cls']:
|
1574 |
-
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
|
1575 |
-
log['conditioning'] = xc
|
1576 |
-
elif isimage(xc):
|
1577 |
-
log["conditioning"] = xc
|
1578 |
-
if ismap(xc):
|
1579 |
-
log["original_conditioning"] = self.to_rgb(xc)
|
1580 |
-
|
1581 |
-
if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
|
1582 |
-
log["c_concat_decoded"] = self.decode_first_stage(c_cat[:, self.c_concat_log_start:self.c_concat_log_end])
|
1583 |
-
|
1584 |
-
if plot_diffusion_rows:
|
1585 |
-
# get diffusion row
|
1586 |
-
diffusion_row = list()
|
1587 |
-
z_start = z[:n_row]
|
1588 |
-
for t in range(self.num_timesteps):
|
1589 |
-
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
1590 |
-
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
1591 |
-
t = t.to(self.device).long()
|
1592 |
-
noise = torch.randn_like(z_start)
|
1593 |
-
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
1594 |
-
diffusion_row.append(self.decode_first_stage(z_noisy))
|
1595 |
-
|
1596 |
-
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
1597 |
-
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
1598 |
-
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
1599 |
-
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
1600 |
-
log["diffusion_row"] = diffusion_grid
|
1601 |
-
|
1602 |
-
if sample:
|
1603 |
-
# get denoise row
|
1604 |
-
with ema_scope("Sampling"):
|
1605 |
-
samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
|
1606 |
-
batch_size=N, ddim=use_ddim,
|
1607 |
-
ddim_steps=ddim_steps, eta=ddim_eta)
|
1608 |
-
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
1609 |
-
x_samples = self.decode_first_stage(samples)
|
1610 |
-
log["samples"] = x_samples
|
1611 |
-
if plot_denoise_rows:
|
1612 |
-
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
1613 |
-
log["denoise_row"] = denoise_grid
|
1614 |
-
|
1615 |
-
if unconditional_guidance_scale > 1.0:
|
1616 |
-
uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label)
|
1617 |
-
uc_cat = c_cat
|
1618 |
-
uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
|
1619 |
-
with ema_scope("Sampling with classifier-free guidance"):
|
1620 |
-
samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
|
1621 |
-
batch_size=N, ddim=use_ddim,
|
1622 |
-
ddim_steps=ddim_steps, eta=ddim_eta,
|
1623 |
-
unconditional_guidance_scale=unconditional_guidance_scale,
|
1624 |
-
unconditional_conditioning=uc_full,
|
1625 |
-
)
|
1626 |
-
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
1627 |
-
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
1628 |
-
|
1629 |
-
return log
|
1630 |
-
|
1631 |
-
|
1632 |
-
class LatentInpaintDiffusion(LatentFinetuneDiffusion):
|
1633 |
-
"""
|
1634 |
-
can either run as pure inpainting model (only concat mode) or with mixed conditionings,
|
1635 |
-
e.g. mask as concat and text via cross-attn.
|
1636 |
-
To disable finetuning mode, set finetune_keys to None
|
1637 |
-
"""
|
1638 |
-
|
1639 |
-
def __init__(self,
|
1640 |
-
concat_keys=("mask", "masked_image"),
|
1641 |
-
masked_image_key="masked_image",
|
1642 |
-
*args, **kwargs
|
1643 |
-
):
|
1644 |
-
super().__init__(concat_keys, *args, **kwargs)
|
1645 |
-
self.masked_image_key = masked_image_key
|
1646 |
-
assert self.masked_image_key in concat_keys
|
1647 |
-
|
1648 |
-
@torch.no_grad()
|
1649 |
-
def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
|
1650 |
-
# note: restricted to non-trainable encoders currently
|
1651 |
-
assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting'
|
1652 |
-
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
1653 |
-
force_c_encode=True, return_original_cond=True, bs=bs)
|
1654 |
-
|
1655 |
-
assert exists(self.concat_keys)
|
1656 |
-
c_cat = list()
|
1657 |
-
for ck in self.concat_keys:
|
1658 |
-
cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
|
1659 |
-
if bs is not None:
|
1660 |
-
cc = cc[:bs]
|
1661 |
-
cc = cc.to(self.device)
|
1662 |
-
bchw = z.shape
|
1663 |
-
if ck != self.masked_image_key:
|
1664 |
-
cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
|
1665 |
-
else:
|
1666 |
-
cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
|
1667 |
-
c_cat.append(cc)
|
1668 |
-
c_cat = torch.cat(c_cat, dim=1)
|
1669 |
-
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
|
1670 |
-
if return_first_stage_outputs:
|
1671 |
-
return z, all_conds, x, xrec, xc
|
1672 |
-
return z, all_conds
|
1673 |
-
|
1674 |
-
@torch.no_grad()
|
1675 |
-
def log_images(self, *args, **kwargs):
|
1676 |
-
log = super(LatentInpaintDiffusion, self).log_images(*args, **kwargs)
|
1677 |
-
log["masked_image"] = rearrange(args[0]["masked_image"],
|
1678 |
-
'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
|
1679 |
-
return log
|
1680 |
-
|
1681 |
-
|
1682 |
-
class LatentDepth2ImageDiffusion(LatentFinetuneDiffusion):
|
1683 |
-
"""
|
1684 |
-
condition on monocular depth estimation
|
1685 |
-
"""
|
1686 |
-
|
1687 |
-
def __init__(self, depth_stage_config, concat_keys=("midas_in",), *args, **kwargs):
|
1688 |
-
super().__init__(concat_keys=concat_keys, *args, **kwargs)
|
1689 |
-
self.depth_model = instantiate_from_config(depth_stage_config)
|
1690 |
-
self.depth_stage_key = concat_keys[0]
|
1691 |
-
|
1692 |
-
@torch.no_grad()
|
1693 |
-
def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
|
1694 |
-
# note: restricted to non-trainable encoders currently
|
1695 |
-
assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for depth2img'
|
1696 |
-
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
1697 |
-
force_c_encode=True, return_original_cond=True, bs=bs)
|
1698 |
-
|
1699 |
-
assert exists(self.concat_keys)
|
1700 |
-
assert len(self.concat_keys) == 1
|
1701 |
-
c_cat = list()
|
1702 |
-
for ck in self.concat_keys:
|
1703 |
-
cc = batch[ck]
|
1704 |
-
if bs is not None:
|
1705 |
-
cc = cc[:bs]
|
1706 |
-
cc = cc.to(self.device)
|
1707 |
-
cc = self.depth_model(cc)
|
1708 |
-
cc = torch.nn.functional.interpolate(
|
1709 |
-
cc,
|
1710 |
-
size=z.shape[2:],
|
1711 |
-
mode="bicubic",
|
1712 |
-
align_corners=False,
|
1713 |
-
)
|
1714 |
-
|
1715 |
-
depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3],
|
1716 |
-
keepdim=True)
|
1717 |
-
cc = 2. * (cc - depth_min) / (depth_max - depth_min + 0.001) - 1.
|
1718 |
-
c_cat.append(cc)
|
1719 |
-
c_cat = torch.cat(c_cat, dim=1)
|
1720 |
-
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
|
1721 |
-
if return_first_stage_outputs:
|
1722 |
-
return z, all_conds, x, xrec, xc
|
1723 |
-
return z, all_conds
|
1724 |
-
|
1725 |
-
@torch.no_grad()
|
1726 |
-
def log_images(self, *args, **kwargs):
|
1727 |
-
log = super().log_images(*args, **kwargs)
|
1728 |
-
depth = self.depth_model(args[0][self.depth_stage_key])
|
1729 |
-
depth_min, depth_max = torch.amin(depth, dim=[1, 2, 3], keepdim=True), \
|
1730 |
-
torch.amax(depth, dim=[1, 2, 3], keepdim=True)
|
1731 |
-
log["depth"] = 2. * (depth - depth_min) / (depth_max - depth_min) - 1.
|
1732 |
-
return log
|
1733 |
-
|
1734 |
-
|
1735 |
-
class LatentUpscaleFinetuneDiffusion(LatentFinetuneDiffusion):
|
1736 |
-
"""
|
1737 |
-
condition on low-res image (and optionally on some spatial noise augmentation)
|
1738 |
-
"""
|
1739 |
-
def __init__(self, concat_keys=("lr",), reshuffle_patch_size=None,
|
1740 |
-
low_scale_config=None, low_scale_key=None, *args, **kwargs):
|
1741 |
-
super().__init__(concat_keys=concat_keys, *args, **kwargs)
|
1742 |
-
self.reshuffle_patch_size = reshuffle_patch_size
|
1743 |
-
self.low_scale_model = None
|
1744 |
-
if low_scale_config is not None:
|
1745 |
-
print("Initializing a low-scale model")
|
1746 |
-
assert exists(low_scale_key)
|
1747 |
-
self.instantiate_low_stage(low_scale_config)
|
1748 |
-
self.low_scale_key = low_scale_key
|
1749 |
-
|
1750 |
-
def instantiate_low_stage(self, config):
|
1751 |
-
model = instantiate_from_config(config)
|
1752 |
-
self.low_scale_model = model.eval()
|
1753 |
-
self.low_scale_model.train = disabled_train
|
1754 |
-
for param in self.low_scale_model.parameters():
|
1755 |
-
param.requires_grad = False
|
1756 |
-
|
1757 |
-
@torch.no_grad()
|
1758 |
-
def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
|
1759 |
-
# note: restricted to non-trainable encoders currently
|
1760 |
-
assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for upscaling-ft'
|
1761 |
-
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
1762 |
-
force_c_encode=True, return_original_cond=True, bs=bs)
|
1763 |
-
|
1764 |
-
assert exists(self.concat_keys)
|
1765 |
-
assert len(self.concat_keys) == 1
|
1766 |
-
# optionally make spatial noise_level here
|
1767 |
-
c_cat = list()
|
1768 |
-
noise_level = None
|
1769 |
-
for ck in self.concat_keys:
|
1770 |
-
cc = batch[ck]
|
1771 |
-
cc = rearrange(cc, 'b h w c -> b c h w')
|
1772 |
-
if exists(self.reshuffle_patch_size):
|
1773 |
-
assert isinstance(self.reshuffle_patch_size, int)
|
1774 |
-
cc = rearrange(cc, 'b c (p1 h) (p2 w) -> b (p1 p2 c) h w',
|
1775 |
-
p1=self.reshuffle_patch_size, p2=self.reshuffle_patch_size)
|
1776 |
-
if bs is not None:
|
1777 |
-
cc = cc[:bs]
|
1778 |
-
cc = cc.to(self.device)
|
1779 |
-
if exists(self.low_scale_model) and ck == self.low_scale_key:
|
1780 |
-
cc, noise_level = self.low_scale_model(cc)
|
1781 |
-
c_cat.append(cc)
|
1782 |
-
c_cat = torch.cat(c_cat, dim=1)
|
1783 |
-
if exists(noise_level):
|
1784 |
-
all_conds = {"c_concat": [c_cat], "c_crossattn": [c], "c_adm": noise_level}
|
1785 |
-
else:
|
1786 |
-
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
|
1787 |
-
if return_first_stage_outputs:
|
1788 |
-
return z, all_conds, x, xrec, xc
|
1789 |
-
return z, all_conds
|
1790 |
-
|
1791 |
-
@torch.no_grad()
|
1792 |
-
def log_images(self, *args, **kwargs):
|
1793 |
-
log = super().log_images(*args, **kwargs)
|
1794 |
-
log["lr"] = rearrange(args[0]["lr"], 'b h w c -> b c h w')
|
1795 |
-
return log
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ldm/models/diffusion/dpm_solver/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
from .sampler import DPMSolverSampler
|
|
|
|
ldm/models/diffusion/dpm_solver/__pycache__/__init__.cpython-39.pyc
DELETED
Binary file (212 Bytes)
|
|
ldm/models/diffusion/dpm_solver/__pycache__/dpm_solver.cpython-39.pyc
DELETED
Binary file (51.6 kB)
|
|
ldm/models/diffusion/dpm_solver/__pycache__/sampler.cpython-39.pyc
DELETED
Binary file (2.79 kB)
|
|
ldm/models/diffusion/dpm_solver/dpm_solver.py
DELETED
@@ -1,1154 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn.functional as F
|
3 |
-
import math
|
4 |
-
from tqdm import tqdm
|
5 |
-
|
6 |
-
|
7 |
-
class NoiseScheduleVP:
|
8 |
-
def __init__(
|
9 |
-
self,
|
10 |
-
schedule='discrete',
|
11 |
-
betas=None,
|
12 |
-
alphas_cumprod=None,
|
13 |
-
continuous_beta_0=0.1,
|
14 |
-
continuous_beta_1=20.,
|
15 |
-
):
|
16 |
-
"""Create a wrapper class for the forward SDE (VP type).
|
17 |
-
***
|
18 |
-
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
|
19 |
-
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
|
20 |
-
***
|
21 |
-
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
|
22 |
-
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
|
23 |
-
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
|
24 |
-
log_alpha_t = self.marginal_log_mean_coeff(t)
|
25 |
-
sigma_t = self.marginal_std(t)
|
26 |
-
lambda_t = self.marginal_lambda(t)
|
27 |
-
Moreover, as lambda(t) is an invertible function, we also support its inverse function:
|
28 |
-
t = self.inverse_lambda(lambda_t)
|
29 |
-
===============================================================
|
30 |
-
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
|
31 |
-
1. For discrete-time DPMs:
|
32 |
-
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
|
33 |
-
t_i = (i + 1) / N
|
34 |
-
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
|
35 |
-
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
|
36 |
-
Args:
|
37 |
-
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
|
38 |
-
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
|
39 |
-
Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
|
40 |
-
**Important**: Please pay special attention for the args for `alphas_cumprod`:
|
41 |
-
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
|
42 |
-
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
|
43 |
-
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
|
44 |
-
alpha_{t_n} = \sqrt{\hat{alpha_n}},
|
45 |
-
and
|
46 |
-
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
|
47 |
-
2. For continuous-time DPMs:
|
48 |
-
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
|
49 |
-
schedule are the default settings in DDPM and improved-DDPM:
|
50 |
-
Args:
|
51 |
-
beta_min: A `float` number. The smallest beta for the linear schedule.
|
52 |
-
beta_max: A `float` number. The largest beta for the linear schedule.
|
53 |
-
cosine_s: A `float` number. The hyperparameter in the cosine schedule.
|
54 |
-
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
|
55 |
-
T: A `float` number. The ending time of the forward process.
|
56 |
-
===============================================================
|
57 |
-
Args:
|
58 |
-
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
|
59 |
-
'linear' or 'cosine' for continuous-time DPMs.
|
60 |
-
Returns:
|
61 |
-
A wrapper object of the forward SDE (VP type).
|
62 |
-
|
63 |
-
===============================================================
|
64 |
-
Example:
|
65 |
-
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
|
66 |
-
>>> ns = NoiseScheduleVP('discrete', betas=betas)
|
67 |
-
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
|
68 |
-
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
|
69 |
-
# For continuous-time DPMs (VPSDE), linear schedule:
|
70 |
-
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
|
71 |
-
"""
|
72 |
-
|
73 |
-
if schedule not in ['discrete', 'linear', 'cosine']:
|
74 |
-
raise ValueError(
|
75 |
-
"Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(
|
76 |
-
schedule))
|
77 |
-
|
78 |
-
self.schedule = schedule
|
79 |
-
if schedule == 'discrete':
|
80 |
-
if betas is not None:
|
81 |
-
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
|
82 |
-
else:
|
83 |
-
assert alphas_cumprod is not None
|
84 |
-
log_alphas = 0.5 * torch.log(alphas_cumprod)
|
85 |
-
self.total_N = len(log_alphas)
|
86 |
-
self.T = 1.
|
87 |
-
self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
|
88 |
-
self.log_alpha_array = log_alphas.reshape((1, -1,))
|
89 |
-
else:
|
90 |
-
self.total_N = 1000
|
91 |
-
self.beta_0 = continuous_beta_0
|
92 |
-
self.beta_1 = continuous_beta_1
|
93 |
-
self.cosine_s = 0.008
|
94 |
-
self.cosine_beta_max = 999.
|
95 |
-
self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (
|
96 |
-
1. + self.cosine_s) / math.pi - self.cosine_s
|
97 |
-
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
|
98 |
-
self.schedule = schedule
|
99 |
-
if schedule == 'cosine':
|
100 |
-
# For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
|
101 |
-
# Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
|
102 |
-
self.T = 0.9946
|
103 |
-
else:
|
104 |
-
self.T = 1.
|
105 |
-
|
106 |
-
def marginal_log_mean_coeff(self, t):
|
107 |
-
"""
|
108 |
-
Compute log(alpha_t) of a given continuous-time label t in [0, T].
|
109 |
-
"""
|
110 |
-
if self.schedule == 'discrete':
|
111 |
-
return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device),
|
112 |
-
self.log_alpha_array.to(t.device)).reshape((-1))
|
113 |
-
elif self.schedule == 'linear':
|
114 |
-
return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
|
115 |
-
elif self.schedule == 'cosine':
|
116 |
-
log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
|
117 |
-
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
|
118 |
-
return log_alpha_t
|
119 |
-
|
120 |
-
def marginal_alpha(self, t):
|
121 |
-
"""
|
122 |
-
Compute alpha_t of a given continuous-time label t in [0, T].
|
123 |
-
"""
|
124 |
-
return torch.exp(self.marginal_log_mean_coeff(t))
|
125 |
-
|
126 |
-
def marginal_std(self, t):
|
127 |
-
"""
|
128 |
-
Compute sigma_t of a given continuous-time label t in [0, T].
|
129 |
-
"""
|
130 |
-
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
|
131 |
-
|
132 |
-
def marginal_lambda(self, t):
|
133 |
-
"""
|
134 |
-
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
|
135 |
-
"""
|
136 |
-
log_mean_coeff = self.marginal_log_mean_coeff(t)
|
137 |
-
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
|
138 |
-
return log_mean_coeff - log_std
|
139 |
-
|
140 |
-
def inverse_lambda(self, lamb):
|
141 |
-
"""
|
142 |
-
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
|
143 |
-
"""
|
144 |
-
if self.schedule == 'linear':
|
145 |
-
tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
146 |
-
Delta = self.beta_0 ** 2 + tmp
|
147 |
-
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
|
148 |
-
elif self.schedule == 'discrete':
|
149 |
-
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
|
150 |
-
t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]),
|
151 |
-
torch.flip(self.t_array.to(lamb.device), [1]))
|
152 |
-
return t.reshape((-1,))
|
153 |
-
else:
|
154 |
-
log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
155 |
-
t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (
|
156 |
-
1. + self.cosine_s) / math.pi - self.cosine_s
|
157 |
-
t = t_fn(log_alpha)
|
158 |
-
return t
|
159 |
-
|
160 |
-
|
161 |
-
def model_wrapper(
|
162 |
-
model,
|
163 |
-
noise_schedule,
|
164 |
-
model_type="noise",
|
165 |
-
model_kwargs={},
|
166 |
-
guidance_type="uncond",
|
167 |
-
condition=None,
|
168 |
-
unconditional_condition=None,
|
169 |
-
guidance_scale=1.,
|
170 |
-
classifier_fn=None,
|
171 |
-
classifier_kwargs={},
|
172 |
-
):
|
173 |
-
"""Create a wrapper function for the noise prediction model.
|
174 |
-
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
|
175 |
-
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
|
176 |
-
We support four types of the diffusion model by setting `model_type`:
|
177 |
-
1. "noise": noise prediction model. (Trained by predicting noise).
|
178 |
-
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
|
179 |
-
3. "v": velocity prediction model. (Trained by predicting the velocity).
|
180 |
-
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
|
181 |
-
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
|
182 |
-
arXiv preprint arXiv:2202.00512 (2022).
|
183 |
-
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
|
184 |
-
arXiv preprint arXiv:2210.02303 (2022).
|
185 |
-
|
186 |
-
4. "score": marginal score function. (Trained by denoising score matching).
|
187 |
-
Note that the score function and the noise prediction model follows a simple relationship:
|
188 |
-
```
|
189 |
-
noise(x_t, t) = -sigma_t * score(x_t, t)
|
190 |
-
```
|
191 |
-
We support three types of guided sampling by DPMs by setting `guidance_type`:
|
192 |
-
1. "uncond": unconditional sampling by DPMs.
|
193 |
-
The input `model` has the following format:
|
194 |
-
``
|
195 |
-
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
196 |
-
``
|
197 |
-
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
|
198 |
-
The input `model` has the following format:
|
199 |
-
``
|
200 |
-
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
201 |
-
``
|
202 |
-
The input `classifier_fn` has the following format:
|
203 |
-
``
|
204 |
-
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
|
205 |
-
``
|
206 |
-
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
|
207 |
-
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
|
208 |
-
3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
|
209 |
-
The input `model` has the following format:
|
210 |
-
``
|
211 |
-
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
|
212 |
-
``
|
213 |
-
And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
|
214 |
-
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
|
215 |
-
arXiv preprint arXiv:2207.12598 (2022).
|
216 |
-
|
217 |
-
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
|
218 |
-
or continuous-time labels (i.e. epsilon to T).
|
219 |
-
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
|
220 |
-
``
|
221 |
-
def model_fn(x, t_continuous) -> noise:
|
222 |
-
t_input = get_model_input_time(t_continuous)
|
223 |
-
return noise_pred(model, x, t_input, **model_kwargs)
|
224 |
-
``
|
225 |
-
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
|
226 |
-
===============================================================
|
227 |
-
Args:
|
228 |
-
model: A diffusion model with the corresponding format described above.
|
229 |
-
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
230 |
-
model_type: A `str`. The parameterization type of the diffusion model.
|
231 |
-
"noise" or "x_start" or "v" or "score".
|
232 |
-
model_kwargs: A `dict`. A dict for the other inputs of the model function.
|
233 |
-
guidance_type: A `str`. The type of the guidance for sampling.
|
234 |
-
"uncond" or "classifier" or "classifier-free".
|
235 |
-
condition: A pytorch tensor. The condition for the guided sampling.
|
236 |
-
Only used for "classifier" or "classifier-free" guidance type.
|
237 |
-
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
|
238 |
-
Only used for "classifier-free" guidance type.
|
239 |
-
guidance_scale: A `float`. The scale for the guided sampling.
|
240 |
-
classifier_fn: A classifier function. Only used for the classifier guidance.
|
241 |
-
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
|
242 |
-
Returns:
|
243 |
-
A noise prediction model that accepts the noised data and the continuous time as the inputs.
|
244 |
-
"""
|
245 |
-
|
246 |
-
def get_model_input_time(t_continuous):
|
247 |
-
"""
|
248 |
-
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
|
249 |
-
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
|
250 |
-
For continuous-time DPMs, we just use `t_continuous`.
|
251 |
-
"""
|
252 |
-
if noise_schedule.schedule == 'discrete':
|
253 |
-
return (t_continuous - 1. / noise_schedule.total_N) * 1000.
|
254 |
-
else:
|
255 |
-
return t_continuous
|
256 |
-
|
257 |
-
def noise_pred_fn(x, t_continuous, cond=None):
|
258 |
-
if t_continuous.reshape((-1,)).shape[0] == 1:
|
259 |
-
t_continuous = t_continuous.expand((x.shape[0]))
|
260 |
-
t_input = get_model_input_time(t_continuous)
|
261 |
-
if cond is None:
|
262 |
-
output = model(x, t_input, **model_kwargs)
|
263 |
-
else:
|
264 |
-
output = model(x, t_input, cond, **model_kwargs)
|
265 |
-
if model_type == "noise":
|
266 |
-
return output
|
267 |
-
elif model_type == "x_start":
|
268 |
-
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
269 |
-
dims = x.dim()
|
270 |
-
return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
|
271 |
-
elif model_type == "v":
|
272 |
-
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
273 |
-
dims = x.dim()
|
274 |
-
return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
|
275 |
-
elif model_type == "score":
|
276 |
-
sigma_t = noise_schedule.marginal_std(t_continuous)
|
277 |
-
dims = x.dim()
|
278 |
-
return -expand_dims(sigma_t, dims) * output
|
279 |
-
|
280 |
-
def cond_grad_fn(x, t_input):
|
281 |
-
"""
|
282 |
-
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
|
283 |
-
"""
|
284 |
-
with torch.enable_grad():
|
285 |
-
x_in = x.detach().requires_grad_(True)
|
286 |
-
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
|
287 |
-
return torch.autograd.grad(log_prob.sum(), x_in)[0]
|
288 |
-
|
289 |
-
def model_fn(x, t_continuous):
|
290 |
-
"""
|
291 |
-
The noise predicition model function that is used for DPM-Solver.
|
292 |
-
"""
|
293 |
-
if t_continuous.reshape((-1,)).shape[0] == 1:
|
294 |
-
t_continuous = t_continuous.expand((x.shape[0]))
|
295 |
-
if guidance_type == "uncond":
|
296 |
-
return noise_pred_fn(x, t_continuous)
|
297 |
-
elif guidance_type == "classifier":
|
298 |
-
assert classifier_fn is not None
|
299 |
-
t_input = get_model_input_time(t_continuous)
|
300 |
-
cond_grad = cond_grad_fn(x, t_input)
|
301 |
-
sigma_t = noise_schedule.marginal_std(t_continuous)
|
302 |
-
noise = noise_pred_fn(x, t_continuous)
|
303 |
-
return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
|
304 |
-
elif guidance_type == "classifier-free":
|
305 |
-
if guidance_scale == 1. or unconditional_condition is None:
|
306 |
-
return noise_pred_fn(x, t_continuous, cond=condition)
|
307 |
-
else:
|
308 |
-
x_in = torch.cat([x] * 2)
|
309 |
-
t_in = torch.cat([t_continuous] * 2)
|
310 |
-
c_in = torch.cat([unconditional_condition, condition])
|
311 |
-
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
|
312 |
-
return noise_uncond + guidance_scale * (noise - noise_uncond)
|
313 |
-
|
314 |
-
assert model_type in ["noise", "x_start", "v"]
|
315 |
-
assert guidance_type in ["uncond", "classifier", "classifier-free"]
|
316 |
-
return model_fn
|
317 |
-
|
318 |
-
|
319 |
-
class DPM_Solver:
|
320 |
-
def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.):
|
321 |
-
"""Construct a DPM-Solver.
|
322 |
-
We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
|
323 |
-
If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
|
324 |
-
If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
|
325 |
-
In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
|
326 |
-
The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
|
327 |
-
Args:
|
328 |
-
model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
|
329 |
-
``
|
330 |
-
def model_fn(x, t_continuous):
|
331 |
-
return noise
|
332 |
-
``
|
333 |
-
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
334 |
-
predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
|
335 |
-
thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
|
336 |
-
max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
|
337 |
-
|
338 |
-
[1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
|
339 |
-
"""
|
340 |
-
self.model = model_fn
|
341 |
-
self.noise_schedule = noise_schedule
|
342 |
-
self.predict_x0 = predict_x0
|
343 |
-
self.thresholding = thresholding
|
344 |
-
self.max_val = max_val
|
345 |
-
|
346 |
-
def noise_prediction_fn(self, x, t):
|
347 |
-
"""
|
348 |
-
Return the noise prediction model.
|
349 |
-
"""
|
350 |
-
return self.model(x, t)
|
351 |
-
|
352 |
-
def data_prediction_fn(self, x, t):
|
353 |
-
"""
|
354 |
-
Return the data prediction model (with thresholding).
|
355 |
-
"""
|
356 |
-
noise = self.noise_prediction_fn(x, t)
|
357 |
-
dims = x.dim()
|
358 |
-
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
|
359 |
-
x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
|
360 |
-
if self.thresholding:
|
361 |
-
p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
|
362 |
-
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
363 |
-
s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
|
364 |
-
x0 = torch.clamp(x0, -s, s) / s
|
365 |
-
return x0
|
366 |
-
|
367 |
-
def model_fn(self, x, t):
|
368 |
-
"""
|
369 |
-
Convert the model to the noise prediction model or the data prediction model.
|
370 |
-
"""
|
371 |
-
if self.predict_x0:
|
372 |
-
return self.data_prediction_fn(x, t)
|
373 |
-
else:
|
374 |
-
return self.noise_prediction_fn(x, t)
|
375 |
-
|
376 |
-
def get_time_steps(self, skip_type, t_T, t_0, N, device):
|
377 |
-
"""Compute the intermediate time steps for sampling.
|
378 |
-
Args:
|
379 |
-
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
|
380 |
-
- 'logSNR': uniform logSNR for the time steps.
|
381 |
-
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
|
382 |
-
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
|
383 |
-
t_T: A `float`. The starting time of the sampling (default is T).
|
384 |
-
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
385 |
-
N: A `int`. The total number of the spacing of the time steps.
|
386 |
-
device: A torch device.
|
387 |
-
Returns:
|
388 |
-
A pytorch tensor of the time steps, with the shape (N + 1,).
|
389 |
-
"""
|
390 |
-
if skip_type == 'logSNR':
|
391 |
-
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
|
392 |
-
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
|
393 |
-
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
|
394 |
-
return self.noise_schedule.inverse_lambda(logSNR_steps)
|
395 |
-
elif skip_type == 'time_uniform':
|
396 |
-
return torch.linspace(t_T, t_0, N + 1).to(device)
|
397 |
-
elif skip_type == 'time_quadratic':
|
398 |
-
t_order = 2
|
399 |
-
t = torch.linspace(t_T ** (1. / t_order), t_0 ** (1. / t_order), N + 1).pow(t_order).to(device)
|
400 |
-
return t
|
401 |
-
else:
|
402 |
-
raise ValueError(
|
403 |
-
"Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
|
404 |
-
|
405 |
-
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
|
406 |
-
"""
|
407 |
-
Get the order of each step for sampling by the singlestep DPM-Solver.
|
408 |
-
We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
|
409 |
-
Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
|
410 |
-
- If order == 1:
|
411 |
-
We take `steps` of DPM-Solver-1 (i.e. DDIM).
|
412 |
-
- If order == 2:
|
413 |
-
- Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
|
414 |
-
- If steps % 2 == 0, we use K steps of DPM-Solver-2.
|
415 |
-
- If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
|
416 |
-
- If order == 3:
|
417 |
-
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
|
418 |
-
- If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
|
419 |
-
- If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
|
420 |
-
- If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
|
421 |
-
============================================
|
422 |
-
Args:
|
423 |
-
order: A `int`. The max order for the solver (2 or 3).
|
424 |
-
steps: A `int`. The total number of function evaluations (NFE).
|
425 |
-
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
|
426 |
-
- 'logSNR': uniform logSNR for the time steps.
|
427 |
-
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
|
428 |
-
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
|
429 |
-
t_T: A `float`. The starting time of the sampling (default is T).
|
430 |
-
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
431 |
-
device: A torch device.
|
432 |
-
Returns:
|
433 |
-
orders: A list of the solver order of each step.
|
434 |
-
"""
|
435 |
-
if order == 3:
|
436 |
-
K = steps // 3 + 1
|
437 |
-
if steps % 3 == 0:
|
438 |
-
orders = [3, ] * (K - 2) + [2, 1]
|
439 |
-
elif steps % 3 == 1:
|
440 |
-
orders = [3, ] * (K - 1) + [1]
|
441 |
-
else:
|
442 |
-
orders = [3, ] * (K - 1) + [2]
|
443 |
-
elif order == 2:
|
444 |
-
if steps % 2 == 0:
|
445 |
-
K = steps // 2
|
446 |
-
orders = [2, ] * K
|
447 |
-
else:
|
448 |
-
K = steps // 2 + 1
|
449 |
-
orders = [2, ] * (K - 1) + [1]
|
450 |
-
elif order == 1:
|
451 |
-
K = 1
|
452 |
-
orders = [1, ] * steps
|
453 |
-
else:
|
454 |
-
raise ValueError("'order' must be '1' or '2' or '3'.")
|
455 |
-
if skip_type == 'logSNR':
|
456 |
-
# To reproduce the results in DPM-Solver paper
|
457 |
-
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
|
458 |
-
else:
|
459 |
-
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[
|
460 |
-
torch.cumsum(torch.tensor([0, ] + orders)).to(device)]
|
461 |
-
return timesteps_outer, orders
|
462 |
-
|
463 |
-
def denoise_to_zero_fn(self, x, s):
|
464 |
-
"""
|
465 |
-
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
|
466 |
-
"""
|
467 |
-
return self.data_prediction_fn(x, s)
|
468 |
-
|
469 |
-
def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
|
470 |
-
"""
|
471 |
-
DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
|
472 |
-
Args:
|
473 |
-
x: A pytorch tensor. The initial value at time `s`.
|
474 |
-
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
475 |
-
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
476 |
-
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
477 |
-
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
478 |
-
return_intermediate: A `bool`. If true, also return the model value at time `s`.
|
479 |
-
Returns:
|
480 |
-
x_t: A pytorch tensor. The approximated solution at time `t`.
|
481 |
-
"""
|
482 |
-
ns = self.noise_schedule
|
483 |
-
dims = x.dim()
|
484 |
-
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
485 |
-
h = lambda_t - lambda_s
|
486 |
-
log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
|
487 |
-
sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
|
488 |
-
alpha_t = torch.exp(log_alpha_t)
|
489 |
-
|
490 |
-
if self.predict_x0:
|
491 |
-
phi_1 = torch.expm1(-h)
|
492 |
-
if model_s is None:
|
493 |
-
model_s = self.model_fn(x, s)
|
494 |
-
x_t = (
|
495 |
-
expand_dims(sigma_t / sigma_s, dims) * x
|
496 |
-
- expand_dims(alpha_t * phi_1, dims) * model_s
|
497 |
-
)
|
498 |
-
if return_intermediate:
|
499 |
-
return x_t, {'model_s': model_s}
|
500 |
-
else:
|
501 |
-
return x_t
|
502 |
-
else:
|
503 |
-
phi_1 = torch.expm1(h)
|
504 |
-
if model_s is None:
|
505 |
-
model_s = self.model_fn(x, s)
|
506 |
-
x_t = (
|
507 |
-
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
508 |
-
- expand_dims(sigma_t * phi_1, dims) * model_s
|
509 |
-
)
|
510 |
-
if return_intermediate:
|
511 |
-
return x_t, {'model_s': model_s}
|
512 |
-
else:
|
513 |
-
return x_t
|
514 |
-
|
515 |
-
def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False,
|
516 |
-
solver_type='dpm_solver'):
|
517 |
-
"""
|
518 |
-
Singlestep solver DPM-Solver-2 from time `s` to time `t`.
|
519 |
-
Args:
|
520 |
-
x: A pytorch tensor. The initial value at time `s`.
|
521 |
-
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
522 |
-
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
523 |
-
r1: A `float`. The hyperparameter of the second-order solver.
|
524 |
-
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
525 |
-
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
526 |
-
return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
|
527 |
-
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
528 |
-
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
529 |
-
Returns:
|
530 |
-
x_t: A pytorch tensor. The approximated solution at time `t`.
|
531 |
-
"""
|
532 |
-
if solver_type not in ['dpm_solver', 'taylor']:
|
533 |
-
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
534 |
-
if r1 is None:
|
535 |
-
r1 = 0.5
|
536 |
-
ns = self.noise_schedule
|
537 |
-
dims = x.dim()
|
538 |
-
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
539 |
-
h = lambda_t - lambda_s
|
540 |
-
lambda_s1 = lambda_s + r1 * h
|
541 |
-
s1 = ns.inverse_lambda(lambda_s1)
|
542 |
-
log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(
|
543 |
-
s1), ns.marginal_log_mean_coeff(t)
|
544 |
-
sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
|
545 |
-
alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
|
546 |
-
|
547 |
-
if self.predict_x0:
|
548 |
-
phi_11 = torch.expm1(-r1 * h)
|
549 |
-
phi_1 = torch.expm1(-h)
|
550 |
-
|
551 |
-
if model_s is None:
|
552 |
-
model_s = self.model_fn(x, s)
|
553 |
-
x_s1 = (
|
554 |
-
expand_dims(sigma_s1 / sigma_s, dims) * x
|
555 |
-
- expand_dims(alpha_s1 * phi_11, dims) * model_s
|
556 |
-
)
|
557 |
-
model_s1 = self.model_fn(x_s1, s1)
|
558 |
-
if solver_type == 'dpm_solver':
|
559 |
-
x_t = (
|
560 |
-
expand_dims(sigma_t / sigma_s, dims) * x
|
561 |
-
- expand_dims(alpha_t * phi_1, dims) * model_s
|
562 |
-
- (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
|
563 |
-
)
|
564 |
-
elif solver_type == 'taylor':
|
565 |
-
x_t = (
|
566 |
-
expand_dims(sigma_t / sigma_s, dims) * x
|
567 |
-
- expand_dims(alpha_t * phi_1, dims) * model_s
|
568 |
-
+ (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (
|
569 |
-
model_s1 - model_s)
|
570 |
-
)
|
571 |
-
else:
|
572 |
-
phi_11 = torch.expm1(r1 * h)
|
573 |
-
phi_1 = torch.expm1(h)
|
574 |
-
|
575 |
-
if model_s is None:
|
576 |
-
model_s = self.model_fn(x, s)
|
577 |
-
x_s1 = (
|
578 |
-
expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
|
579 |
-
- expand_dims(sigma_s1 * phi_11, dims) * model_s
|
580 |
-
)
|
581 |
-
model_s1 = self.model_fn(x_s1, s1)
|
582 |
-
if solver_type == 'dpm_solver':
|
583 |
-
x_t = (
|
584 |
-
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
585 |
-
- expand_dims(sigma_t * phi_1, dims) * model_s
|
586 |
-
- (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
|
587 |
-
)
|
588 |
-
elif solver_type == 'taylor':
|
589 |
-
x_t = (
|
590 |
-
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
591 |
-
- expand_dims(sigma_t * phi_1, dims) * model_s
|
592 |
-
- (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
|
593 |
-
)
|
594 |
-
if return_intermediate:
|
595 |
-
return x_t, {'model_s': model_s, 'model_s1': model_s1}
|
596 |
-
else:
|
597 |
-
return x_t
|
598 |
-
|
599 |
-
def singlestep_dpm_solver_third_update(self, x, s, t, r1=1. / 3., r2=2. / 3., model_s=None, model_s1=None,
|
600 |
-
return_intermediate=False, solver_type='dpm_solver'):
|
601 |
-
"""
|
602 |
-
Singlestep solver DPM-Solver-3 from time `s` to time `t`.
|
603 |
-
Args:
|
604 |
-
x: A pytorch tensor. The initial value at time `s`.
|
605 |
-
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
606 |
-
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
607 |
-
r1: A `float`. The hyperparameter of the third-order solver.
|
608 |
-
r2: A `float`. The hyperparameter of the third-order solver.
|
609 |
-
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
610 |
-
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
611 |
-
model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
|
612 |
-
If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
|
613 |
-
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
614 |
-
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
615 |
-
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
616 |
-
Returns:
|
617 |
-
x_t: A pytorch tensor. The approximated solution at time `t`.
|
618 |
-
"""
|
619 |
-
if solver_type not in ['dpm_solver', 'taylor']:
|
620 |
-
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
621 |
-
if r1 is None:
|
622 |
-
r1 = 1. / 3.
|
623 |
-
if r2 is None:
|
624 |
-
r2 = 2. / 3.
|
625 |
-
ns = self.noise_schedule
|
626 |
-
dims = x.dim()
|
627 |
-
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
628 |
-
h = lambda_t - lambda_s
|
629 |
-
lambda_s1 = lambda_s + r1 * h
|
630 |
-
lambda_s2 = lambda_s + r2 * h
|
631 |
-
s1 = ns.inverse_lambda(lambda_s1)
|
632 |
-
s2 = ns.inverse_lambda(lambda_s2)
|
633 |
-
log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(
|
634 |
-
s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
|
635 |
-
sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(
|
636 |
-
s2), ns.marginal_std(t)
|
637 |
-
alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
|
638 |
-
|
639 |
-
if self.predict_x0:
|
640 |
-
phi_11 = torch.expm1(-r1 * h)
|
641 |
-
phi_12 = torch.expm1(-r2 * h)
|
642 |
-
phi_1 = torch.expm1(-h)
|
643 |
-
phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
|
644 |
-
phi_2 = phi_1 / h + 1.
|
645 |
-
phi_3 = phi_2 / h - 0.5
|
646 |
-
|
647 |
-
if model_s is None:
|
648 |
-
model_s = self.model_fn(x, s)
|
649 |
-
if model_s1 is None:
|
650 |
-
x_s1 = (
|
651 |
-
expand_dims(sigma_s1 / sigma_s, dims) * x
|
652 |
-
- expand_dims(alpha_s1 * phi_11, dims) * model_s
|
653 |
-
)
|
654 |
-
model_s1 = self.model_fn(x_s1, s1)
|
655 |
-
x_s2 = (
|
656 |
-
expand_dims(sigma_s2 / sigma_s, dims) * x
|
657 |
-
- expand_dims(alpha_s2 * phi_12, dims) * model_s
|
658 |
-
+ r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
|
659 |
-
)
|
660 |
-
model_s2 = self.model_fn(x_s2, s2)
|
661 |
-
if solver_type == 'dpm_solver':
|
662 |
-
x_t = (
|
663 |
-
expand_dims(sigma_t / sigma_s, dims) * x
|
664 |
-
- expand_dims(alpha_t * phi_1, dims) * model_s
|
665 |
-
+ (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
|
666 |
-
)
|
667 |
-
elif solver_type == 'taylor':
|
668 |
-
D1_0 = (1. / r1) * (model_s1 - model_s)
|
669 |
-
D1_1 = (1. / r2) * (model_s2 - model_s)
|
670 |
-
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
671 |
-
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
|
672 |
-
x_t = (
|
673 |
-
expand_dims(sigma_t / sigma_s, dims) * x
|
674 |
-
- expand_dims(alpha_t * phi_1, dims) * model_s
|
675 |
-
+ expand_dims(alpha_t * phi_2, dims) * D1
|
676 |
-
- expand_dims(alpha_t * phi_3, dims) * D2
|
677 |
-
)
|
678 |
-
else:
|
679 |
-
phi_11 = torch.expm1(r1 * h)
|
680 |
-
phi_12 = torch.expm1(r2 * h)
|
681 |
-
phi_1 = torch.expm1(h)
|
682 |
-
phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
|
683 |
-
phi_2 = phi_1 / h - 1.
|
684 |
-
phi_3 = phi_2 / h - 0.5
|
685 |
-
|
686 |
-
if model_s is None:
|
687 |
-
model_s = self.model_fn(x, s)
|
688 |
-
if model_s1 is None:
|
689 |
-
x_s1 = (
|
690 |
-
expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
|
691 |
-
- expand_dims(sigma_s1 * phi_11, dims) * model_s
|
692 |
-
)
|
693 |
-
model_s1 = self.model_fn(x_s1, s1)
|
694 |
-
x_s2 = (
|
695 |
-
expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x
|
696 |
-
- expand_dims(sigma_s2 * phi_12, dims) * model_s
|
697 |
-
- r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s)
|
698 |
-
)
|
699 |
-
model_s2 = self.model_fn(x_s2, s2)
|
700 |
-
if solver_type == 'dpm_solver':
|
701 |
-
x_t = (
|
702 |
-
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
703 |
-
- expand_dims(sigma_t * phi_1, dims) * model_s
|
704 |
-
- (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s)
|
705 |
-
)
|
706 |
-
elif solver_type == 'taylor':
|
707 |
-
D1_0 = (1. / r1) * (model_s1 - model_s)
|
708 |
-
D1_1 = (1. / r2) * (model_s2 - model_s)
|
709 |
-
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
710 |
-
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
|
711 |
-
x_t = (
|
712 |
-
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
713 |
-
- expand_dims(sigma_t * phi_1, dims) * model_s
|
714 |
-
- expand_dims(sigma_t * phi_2, dims) * D1
|
715 |
-
- expand_dims(sigma_t * phi_3, dims) * D2
|
716 |
-
)
|
717 |
-
|
718 |
-
if return_intermediate:
|
719 |
-
return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
|
720 |
-
else:
|
721 |
-
return x_t
|
722 |
-
|
723 |
-
def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
|
724 |
-
"""
|
725 |
-
Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
|
726 |
-
Args:
|
727 |
-
x: A pytorch tensor. The initial value at time `s`.
|
728 |
-
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
729 |
-
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
730 |
-
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
731 |
-
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
732 |
-
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
733 |
-
Returns:
|
734 |
-
x_t: A pytorch tensor. The approximated solution at time `t`.
|
735 |
-
"""
|
736 |
-
if solver_type not in ['dpm_solver', 'taylor']:
|
737 |
-
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
738 |
-
ns = self.noise_schedule
|
739 |
-
dims = x.dim()
|
740 |
-
model_prev_1, model_prev_0 = model_prev_list
|
741 |
-
t_prev_1, t_prev_0 = t_prev_list
|
742 |
-
lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(
|
743 |
-
t_prev_0), ns.marginal_lambda(t)
|
744 |
-
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
745 |
-
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
746 |
-
alpha_t = torch.exp(log_alpha_t)
|
747 |
-
|
748 |
-
h_0 = lambda_prev_0 - lambda_prev_1
|
749 |
-
h = lambda_t - lambda_prev_0
|
750 |
-
r0 = h_0 / h
|
751 |
-
D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
|
752 |
-
if self.predict_x0:
|
753 |
-
if solver_type == 'dpm_solver':
|
754 |
-
x_t = (
|
755 |
-
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
756 |
-
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
757 |
-
- 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0
|
758 |
-
)
|
759 |
-
elif solver_type == 'taylor':
|
760 |
-
x_t = (
|
761 |
-
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
762 |
-
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
763 |
-
+ expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0
|
764 |
-
)
|
765 |
-
else:
|
766 |
-
if solver_type == 'dpm_solver':
|
767 |
-
x_t = (
|
768 |
-
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
769 |
-
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
770 |
-
- 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0
|
771 |
-
)
|
772 |
-
elif solver_type == 'taylor':
|
773 |
-
x_t = (
|
774 |
-
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
775 |
-
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
776 |
-
- expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0
|
777 |
-
)
|
778 |
-
return x_t
|
779 |
-
|
780 |
-
def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'):
|
781 |
-
"""
|
782 |
-
Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
|
783 |
-
Args:
|
784 |
-
x: A pytorch tensor. The initial value at time `s`.
|
785 |
-
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
786 |
-
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
787 |
-
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
788 |
-
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
789 |
-
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
790 |
-
Returns:
|
791 |
-
x_t: A pytorch tensor. The approximated solution at time `t`.
|
792 |
-
"""
|
793 |
-
ns = self.noise_schedule
|
794 |
-
dims = x.dim()
|
795 |
-
model_prev_2, model_prev_1, model_prev_0 = model_prev_list
|
796 |
-
t_prev_2, t_prev_1, t_prev_0 = t_prev_list
|
797 |
-
lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(
|
798 |
-
t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
|
799 |
-
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
800 |
-
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
801 |
-
alpha_t = torch.exp(log_alpha_t)
|
802 |
-
|
803 |
-
h_1 = lambda_prev_1 - lambda_prev_2
|
804 |
-
h_0 = lambda_prev_0 - lambda_prev_1
|
805 |
-
h = lambda_t - lambda_prev_0
|
806 |
-
r0, r1 = h_0 / h, h_1 / h
|
807 |
-
D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
|
808 |
-
D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2)
|
809 |
-
D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
|
810 |
-
D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1)
|
811 |
-
if self.predict_x0:
|
812 |
-
x_t = (
|
813 |
-
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
814 |
-
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
815 |
-
+ expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1
|
816 |
-
- expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h ** 2 - 0.5), dims) * D2
|
817 |
-
)
|
818 |
-
else:
|
819 |
-
x_t = (
|
820 |
-
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
821 |
-
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
822 |
-
- expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1
|
823 |
-
- expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h ** 2 - 0.5), dims) * D2
|
824 |
-
)
|
825 |
-
return x_t
|
826 |
-
|
827 |
-
def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None,
|
828 |
-
r2=None):
|
829 |
-
"""
|
830 |
-
Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
|
831 |
-
Args:
|
832 |
-
x: A pytorch tensor. The initial value at time `s`.
|
833 |
-
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
834 |
-
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
835 |
-
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
|
836 |
-
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
837 |
-
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
838 |
-
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
839 |
-
r1: A `float`. The hyperparameter of the second-order or third-order solver.
|
840 |
-
r2: A `float`. The hyperparameter of the third-order solver.
|
841 |
-
Returns:
|
842 |
-
x_t: A pytorch tensor. The approximated solution at time `t`.
|
843 |
-
"""
|
844 |
-
if order == 1:
|
845 |
-
return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
|
846 |
-
elif order == 2:
|
847 |
-
return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate,
|
848 |
-
solver_type=solver_type, r1=r1)
|
849 |
-
elif order == 3:
|
850 |
-
return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate,
|
851 |
-
solver_type=solver_type, r1=r1, r2=r2)
|
852 |
-
else:
|
853 |
-
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
|
854 |
-
|
855 |
-
def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'):
|
856 |
-
"""
|
857 |
-
Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
|
858 |
-
Args:
|
859 |
-
x: A pytorch tensor. The initial value at time `s`.
|
860 |
-
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
861 |
-
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
862 |
-
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
863 |
-
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
|
864 |
-
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
865 |
-
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
866 |
-
Returns:
|
867 |
-
x_t: A pytorch tensor. The approximated solution at time `t`.
|
868 |
-
"""
|
869 |
-
if order == 1:
|
870 |
-
return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
|
871 |
-
elif order == 2:
|
872 |
-
return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
|
873 |
-
elif order == 3:
|
874 |
-
return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
|
875 |
-
else:
|
876 |
-
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
|
877 |
-
|
878 |
-
def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5,
|
879 |
-
solver_type='dpm_solver'):
|
880 |
-
"""
|
881 |
-
The adaptive step size solver based on singlestep DPM-Solver.
|
882 |
-
Args:
|
883 |
-
x: A pytorch tensor. The initial value at time `t_T`.
|
884 |
-
order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
|
885 |
-
t_T: A `float`. The starting time of the sampling (default is T).
|
886 |
-
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
887 |
-
h_init: A `float`. The initial step size (for logSNR).
|
888 |
-
atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
|
889 |
-
rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
|
890 |
-
theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
|
891 |
-
t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
|
892 |
-
current time and `t_0` is less than `t_err`. The default setting is 1e-5.
|
893 |
-
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
894 |
-
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
895 |
-
Returns:
|
896 |
-
x_0: A pytorch tensor. The approximated solution at time `t_0`.
|
897 |
-
[1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
|
898 |
-
"""
|
899 |
-
ns = self.noise_schedule
|
900 |
-
s = t_T * torch.ones((x.shape[0],)).to(x)
|
901 |
-
lambda_s = ns.marginal_lambda(s)
|
902 |
-
lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
|
903 |
-
h = h_init * torch.ones_like(s).to(x)
|
904 |
-
x_prev = x
|
905 |
-
nfe = 0
|
906 |
-
if order == 2:
|
907 |
-
r1 = 0.5
|
908 |
-
lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
|
909 |
-
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
|
910 |
-
solver_type=solver_type,
|
911 |
-
**kwargs)
|
912 |
-
elif order == 3:
|
913 |
-
r1, r2 = 1. / 3., 2. / 3.
|
914 |
-
lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
|
915 |
-
return_intermediate=True,
|
916 |
-
solver_type=solver_type)
|
917 |
-
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2,
|
918 |
-
solver_type=solver_type,
|
919 |
-
**kwargs)
|
920 |
-
else:
|
921 |
-
raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
|
922 |
-
while torch.abs((s - t_0)).mean() > t_err:
|
923 |
-
t = ns.inverse_lambda(lambda_s + h)
|
924 |
-
x_lower, lower_noise_kwargs = lower_update(x, s, t)
|
925 |
-
x_higher = higher_update(x, s, t, **lower_noise_kwargs)
|
926 |
-
delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
|
927 |
-
norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
|
928 |
-
E = norm_fn((x_higher - x_lower) / delta).max()
|
929 |
-
if torch.all(E <= 1.):
|
930 |
-
x = x_higher
|
931 |
-
s = t
|
932 |
-
x_prev = x_lower
|
933 |
-
lambda_s = ns.marginal_lambda(s)
|
934 |
-
h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
|
935 |
-
nfe += order
|
936 |
-
print('adaptive solver nfe', nfe)
|
937 |
-
return x
|
938 |
-
|
939 |
-
def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
|
940 |
-
method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
|
941 |
-
atol=0.0078, rtol=0.05,
|
942 |
-
):
|
943 |
-
"""
|
944 |
-
Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
|
945 |
-
=====================================================
|
946 |
-
We support the following algorithms for both noise prediction model and data prediction model:
|
947 |
-
- 'singlestep':
|
948 |
-
Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
|
949 |
-
We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
|
950 |
-
The total number of function evaluations (NFE) == `steps`.
|
951 |
-
Given a fixed NFE == `steps`, the sampling procedure is:
|
952 |
-
- If `order` == 1:
|
953 |
-
- Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
|
954 |
-
- If `order` == 2:
|
955 |
-
- Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
|
956 |
-
- If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
|
957 |
-
- If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
|
958 |
-
- If `order` == 3:
|
959 |
-
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
|
960 |
-
- If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
|
961 |
-
- If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
|
962 |
-
- If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
|
963 |
-
- 'multistep':
|
964 |
-
Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
|
965 |
-
We initialize the first `order` values by lower order multistep solvers.
|
966 |
-
Given a fixed NFE == `steps`, the sampling procedure is:
|
967 |
-
Denote K = steps.
|
968 |
-
- If `order` == 1:
|
969 |
-
- We use K steps of DPM-Solver-1 (i.e. DDIM).
|
970 |
-
- If `order` == 2:
|
971 |
-
- We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
|
972 |
-
- If `order` == 3:
|
973 |
-
- We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
|
974 |
-
- 'singlestep_fixed':
|
975 |
-
Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
|
976 |
-
We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
|
977 |
-
- 'adaptive':
|
978 |
-
Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
|
979 |
-
We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
|
980 |
-
You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
|
981 |
-
(NFE) and the sample quality.
|
982 |
-
- If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
|
983 |
-
- If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
|
984 |
-
=====================================================
|
985 |
-
Some advices for choosing the algorithm:
|
986 |
-
- For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
|
987 |
-
Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`.
|
988 |
-
e.g.
|
989 |
-
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False)
|
990 |
-
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
|
991 |
-
skip_type='time_uniform', method='singlestep')
|
992 |
-
- For **guided sampling with large guidance scale** by DPMs:
|
993 |
-
Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`.
|
994 |
-
e.g.
|
995 |
-
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True)
|
996 |
-
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
|
997 |
-
skip_type='time_uniform', method='multistep')
|
998 |
-
We support three types of `skip_type`:
|
999 |
-
- 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
|
1000 |
-
- 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
|
1001 |
-
- 'time_quadratic': quadratic time for the time steps.
|
1002 |
-
=====================================================
|
1003 |
-
Args:
|
1004 |
-
x: A pytorch tensor. The initial value at time `t_start`
|
1005 |
-
e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
|
1006 |
-
steps: A `int`. The total number of function evaluations (NFE).
|
1007 |
-
t_start: A `float`. The starting time of the sampling.
|
1008 |
-
If `T` is None, we use self.noise_schedule.T (default is 1.0).
|
1009 |
-
t_end: A `float`. The ending time of the sampling.
|
1010 |
-
If `t_end` is None, we use 1. / self.noise_schedule.total_N.
|
1011 |
-
e.g. if total_N == 1000, we have `t_end` == 1e-3.
|
1012 |
-
For discrete-time DPMs:
|
1013 |
-
- We recommend `t_end` == 1. / self.noise_schedule.total_N.
|
1014 |
-
For continuous-time DPMs:
|
1015 |
-
- We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
|
1016 |
-
order: A `int`. The order of DPM-Solver.
|
1017 |
-
skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
|
1018 |
-
method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
|
1019 |
-
denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
|
1020 |
-
Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
|
1021 |
-
This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
|
1022 |
-
score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
|
1023 |
-
for diffusion models sampling by diffusion SDEs for low-resolutional images
|
1024 |
-
(such as CIFAR-10). However, we observed that such trick does not matter for
|
1025 |
-
high-resolutional images. As it needs an additional NFE, we do not recommend
|
1026 |
-
it for high-resolutional images.
|
1027 |
-
lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
|
1028 |
-
Only valid for `method=multistep` and `steps < 15`. We empirically find that
|
1029 |
-
this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
|
1030 |
-
(especially for steps <= 10). So we recommend to set it to be `True`.
|
1031 |
-
solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`.
|
1032 |
-
atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
|
1033 |
-
rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
|
1034 |
-
Returns:
|
1035 |
-
x_end: A pytorch tensor. The approximated solution at time `t_end`.
|
1036 |
-
"""
|
1037 |
-
t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
|
1038 |
-
t_T = self.noise_schedule.T if t_start is None else t_start
|
1039 |
-
device = x.device
|
1040 |
-
if method == 'adaptive':
|
1041 |
-
with torch.no_grad():
|
1042 |
-
x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol,
|
1043 |
-
solver_type=solver_type)
|
1044 |
-
elif method == 'multistep':
|
1045 |
-
assert steps >= order
|
1046 |
-
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
|
1047 |
-
assert timesteps.shape[0] - 1 == steps
|
1048 |
-
with torch.no_grad():
|
1049 |
-
vec_t = timesteps[0].expand((x.shape[0]))
|
1050 |
-
model_prev_list = [self.model_fn(x, vec_t)]
|
1051 |
-
t_prev_list = [vec_t]
|
1052 |
-
# Init the first `order` values by lower order multistep DPM-Solver.
|
1053 |
-
for init_order in tqdm(range(1, order), desc="DPM init order"):
|
1054 |
-
vec_t = timesteps[init_order].expand(x.shape[0])
|
1055 |
-
x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order,
|
1056 |
-
solver_type=solver_type)
|
1057 |
-
model_prev_list.append(self.model_fn(x, vec_t))
|
1058 |
-
t_prev_list.append(vec_t)
|
1059 |
-
# Compute the remaining values by `order`-th order multistep DPM-Solver.
|
1060 |
-
for step in tqdm(range(order, steps + 1), desc="DPM multistep"):
|
1061 |
-
vec_t = timesteps[step].expand(x.shape[0])
|
1062 |
-
if lower_order_final and steps < 15:
|
1063 |
-
step_order = min(order, steps + 1 - step)
|
1064 |
-
else:
|
1065 |
-
step_order = order
|
1066 |
-
x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, step_order,
|
1067 |
-
solver_type=solver_type)
|
1068 |
-
for i in range(order - 1):
|
1069 |
-
t_prev_list[i] = t_prev_list[i + 1]
|
1070 |
-
model_prev_list[i] = model_prev_list[i + 1]
|
1071 |
-
t_prev_list[-1] = vec_t
|
1072 |
-
# We do not need to evaluate the final model value.
|
1073 |
-
if step < steps:
|
1074 |
-
model_prev_list[-1] = self.model_fn(x, vec_t)
|
1075 |
-
elif method in ['singlestep', 'singlestep_fixed']:
|
1076 |
-
if method == 'singlestep':
|
1077 |
-
timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order,
|
1078 |
-
skip_type=skip_type,
|
1079 |
-
t_T=t_T, t_0=t_0,
|
1080 |
-
device=device)
|
1081 |
-
elif method == 'singlestep_fixed':
|
1082 |
-
K = steps // order
|
1083 |
-
orders = [order, ] * K
|
1084 |
-
timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
|
1085 |
-
for i, order in enumerate(orders):
|
1086 |
-
t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1]
|
1087 |
-
timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(),
|
1088 |
-
N=order, device=device)
|
1089 |
-
lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
|
1090 |
-
vec_s, vec_t = t_T_inner.tile(x.shape[0]), t_0_inner.tile(x.shape[0])
|
1091 |
-
h = lambda_inner[-1] - lambda_inner[0]
|
1092 |
-
r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
|
1093 |
-
r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
|
1094 |
-
x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2)
|
1095 |
-
if denoise_to_zero:
|
1096 |
-
x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
|
1097 |
-
return x
|
1098 |
-
|
1099 |
-
|
1100 |
-
#############################################################
|
1101 |
-
# other utility functions
|
1102 |
-
#############################################################
|
1103 |
-
|
1104 |
-
def interpolate_fn(x, xp, yp):
|
1105 |
-
"""
|
1106 |
-
A piecewise linear function y = f(x), using xp and yp as keypoints.
|
1107 |
-
We implement f(x) in a differentiable way (i.e. applicable for autograd).
|
1108 |
-
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
|
1109 |
-
Args:
|
1110 |
-
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
|
1111 |
-
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
|
1112 |
-
yp: PyTorch tensor with shape [C, K].
|
1113 |
-
Returns:
|
1114 |
-
The function values f(x), with shape [N, C].
|
1115 |
-
"""
|
1116 |
-
N, K = x.shape[0], xp.shape[1]
|
1117 |
-
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
|
1118 |
-
sorted_all_x, x_indices = torch.sort(all_x, dim=2)
|
1119 |
-
x_idx = torch.argmin(x_indices, dim=2)
|
1120 |
-
cand_start_idx = x_idx - 1
|
1121 |
-
start_idx = torch.where(
|
1122 |
-
torch.eq(x_idx, 0),
|
1123 |
-
torch.tensor(1, device=x.device),
|
1124 |
-
torch.where(
|
1125 |
-
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
1126 |
-
),
|
1127 |
-
)
|
1128 |
-
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
|
1129 |
-
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
|
1130 |
-
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
|
1131 |
-
start_idx2 = torch.where(
|
1132 |
-
torch.eq(x_idx, 0),
|
1133 |
-
torch.tensor(0, device=x.device),
|
1134 |
-
torch.where(
|
1135 |
-
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
1136 |
-
),
|
1137 |
-
)
|
1138 |
-
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
|
1139 |
-
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
|
1140 |
-
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
|
1141 |
-
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
|
1142 |
-
return cand
|
1143 |
-
|
1144 |
-
|
1145 |
-
def expand_dims(v, dims):
|
1146 |
-
"""
|
1147 |
-
Expand the tensor `v` to the dim `dims`.
|
1148 |
-
Args:
|
1149 |
-
`v`: a PyTorch tensor with shape [N].
|
1150 |
-
`dim`: a `int`.
|
1151 |
-
Returns:
|
1152 |
-
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
|
1153 |
-
"""
|
1154 |
-
return v[(...,) + (None,) * (dims - 1)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|