Spaces:
Running
Running
Commit
·
e589d46
1
Parent(s):
a069d53
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,13 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
3 |
-
|
|
|
4 |
description2 = "<h3>Demo EmotioNL</h3>\nThis demo allows you to analyse the emotions in a dataset.\nThe data should be in tsv-format with two named columns: the first column (id) should contain the sentence IDs, and the second column (text) should contain the actual texts. Optionally, there is a third column named 'date', which specifies the date associated with the text (e.g., tweet date). This column is necessary when the options 'emotion distribution over time' and 'peaks' are selected."
|
5 |
|
|
|
|
|
6 |
def what_happened(text, file_object, option_list):
|
7 |
if file_object:
|
8 |
output = "You uploaded a file."
|
@@ -35,6 +40,16 @@ def what_happened2(file_object, option_list):
|
|
35 |
if "topics" in option_list:
|
36 |
output5 = "This option was selected."
|
37 |
return [output1, output2, output3, output4, output5]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
|
40 |
iface0 = gr.Interface(
|
@@ -52,13 +67,12 @@ iface0 = gr.Interface(
|
|
52 |
],
|
53 |
outputs="text")
|
54 |
|
55 |
-
|
56 |
-
fn=
|
57 |
-
description =
|
58 |
inputs = gr.Textbox(
|
59 |
label="Enter a sentence",
|
60 |
-
lines=1,
|
61 |
-
value="Your name"),
|
62 |
outputs="text")
|
63 |
|
64 |
iface2 = gr.Interface(
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoConfig, AutoModel, AutoModelForSequenceClassification
|
4 |
|
5 |
+
|
6 |
+
description_sentence = "<h3>Demo EmotioNL</h3>\nThis demo allows you to analyse the emotion in a sentence."
|
7 |
description2 = "<h3>Demo EmotioNL</h3>\nThis demo allows you to analyse the emotions in a dataset.\nThe data should be in tsv-format with two named columns: the first column (id) should contain the sentence IDs, and the second column (text) should contain the actual texts. Optionally, there is a third column named 'date', which specifies the date associated with the text (e.g., tweet date). This column is necessary when the options 'emotion distribution over time' and 'peaks' are selected."
|
8 |
|
9 |
+
inference_modelpath = "model/checkpoint-128"
|
10 |
+
|
11 |
def what_happened(text, file_object, option_list):
|
12 |
if file_object:
|
13 |
output = "You uploaded a file."
|
|
|
40 |
if "topics" in option_list:
|
41 |
output5 = "This option was selected."
|
42 |
return [output1, output2, output3, output4, output5]
|
43 |
+
|
44 |
+
def inference_sentence(text):
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained(inference_modelpath)
|
46 |
+
model = AutoModelForSequenceClassification.from_pretrained(inference_modelpath)
|
47 |
+
inputs = tokenizer(text, return_tensors="pt")
|
48 |
+
with torch.no_grad(): # run model
|
49 |
+
logits = model(**inputs).logits
|
50 |
+
predicted_class_id = logits.argmax().item()
|
51 |
+
output = model.config.id2label[predicted_class_id]
|
52 |
+
return output
|
53 |
|
54 |
|
55 |
iface0 = gr.Interface(
|
|
|
67 |
],
|
68 |
outputs="text")
|
69 |
|
70 |
+
iface_sentence = gr.Interface(
|
71 |
+
fn=inference_sentence,
|
72 |
+
description = description_sentence,
|
73 |
inputs = gr.Textbox(
|
74 |
label="Enter a sentence",
|
75 |
+
lines=1),
|
|
|
76 |
outputs="text")
|
77 |
|
78 |
iface2 = gr.Interface(
|