Spaces:
Running
Running
import os | |
import sys | |
import cv2 | |
import numpy as np | |
def xyz2lonlat(xyz): | |
atan2 = np.arctan2 | |
asin = np.arcsin | |
norm = np.linalg.norm(xyz, axis=-1, keepdims=True) | |
xyz_norm = xyz / norm | |
x = xyz_norm[..., 0:1] | |
y = xyz_norm[..., 1:2] | |
z = xyz_norm[..., 2:] | |
lon = atan2(x, z) | |
lat = asin(y) | |
lst = [lon, lat] | |
out = np.concatenate(lst, axis=-1) | |
return out | |
def lonlat2XY(lonlat, shape): | |
X = (lonlat[..., 0:1] / (2 * np.pi) + 0.5) * (shape[1] - 1) | |
Y = (lonlat[..., 1:] / (np.pi) + 0.5) * (shape[0] - 1) | |
lst = [X, Y] | |
out = np.concatenate(lst, axis=-1) | |
return out | |
class Equirectangular: | |
def __init__(self, img): | |
# self._img = cv2.imread(img_name, cv2.IMREAD_COLOR) | |
self._img = img | |
[self._height, self._width, _] = self._img.shape | |
# cp = self._img.copy() | |
# w = self._width | |
# self._img[:, :w/8, :] = cp[:, 7*w/8:, :] | |
# self._img[:, w/8:, :] = cp[:, :7*w/8, :] | |
def GetPerspective(self, FOV, THETA, PHI, height, width): | |
# | |
# THETA is left/right angle, PHI is up/down angle, both in degree | |
# | |
f = 0.5 * width * 1 / np.tan(0.5 * FOV / 180.0 * np.pi) | |
cx = (width - 1) / 2.0 | |
cy = (height - 1) / 2.0 | |
K = np.array([ | |
[f, 0, cx], | |
[0, f, cy], | |
[0, 0, 1], | |
], np.float32) | |
K_inv = np.linalg.inv(K) | |
x = np.arange(width) | |
y = np.arange(height) | |
x, y = np.meshgrid(x, y) | |
z = np.ones_like(x) | |
xyz = np.concatenate([x[..., None], y[..., None], z[..., None]], axis=-1) | |
xyz = xyz @ K_inv.T | |
y_axis = np.array([0.0, 1.0, 0.0], np.float32) | |
x_axis = np.array([1.0, 0.0, 0.0], np.float32) | |
R1, _ = cv2.Rodrigues(y_axis * np.radians(THETA)) | |
R2, _ = cv2.Rodrigues(np.dot(R1, x_axis) * np.radians(PHI)) | |
R = R2 @ R1 | |
xyz = xyz @ R.T | |
lonlat = xyz2lonlat(xyz) | |
XY = lonlat2XY(lonlat, shape=self._img.shape).astype(np.float32) | |
persp = cv2.remap(self._img, XY[..., 0], XY[..., 1], cv2.INTER_CUBIC, borderMode=cv2.BORDER_WRAP) | |
return persp |