homemade_gpt / app.py
ULMER Louis (T0240644)
add application file
260934b
raw
history blame
6.58 kB
import streamlit as st # import the Streamlit library
from langchain.chains import ConversationChain
from langchain.llms import OpenAIChat # import OpenAI model
from langchain.chains.conversation.memory import ConversationEntityMemory
from langchain.chains.conversation.prompt import ENTITY_MEMORY_CONVERSATION_TEMPLATE
import pickle
# Initialize session State
st.session_state["show_new_chat_button"] = False
if "id" not in st.session_state:
st.session_state["id"] = 0
if "conversation" not in st.session_state:
st.session_state.conversation = []
if "input" not in st.session_state:
st.session_state["input"] = ""
if "stored_session" not in st.session_state:
st.session_state["stored_session"]={}
if "input_temp" not in st.session_state:
st.session_state["input_temp"] = ""
# Set the title of the Streamlit app
st.title("HomemadeGPT πŸ€– - The custom chatbot you need")
# Historique des conversations
conversation_history = st.empty()
API_KEY = st.sidebar.text_input("API-Key", type="password")
with st.sidebar.expander(" πŸ› οΈ Settings ", expanded=False):
# Option to preview memory store
if 'entity_memory' in st.session_state:
if st.checkbox("Preview memory store"):
st.write(st.session_state.entity_memory.store)
# Option to preview memory buffer
if st.checkbox("Preview memory buffer"):
st.write(st.session_state.entity_memory.buffer)
MODEL = st.selectbox(label='Model', options=['gpt-3.5-turbo','gpt-4','gpt-4-32k','text-davinci-003','text-davinci-002'])
K = st.number_input(' (#)Summary of prompts to consider',min_value=3,max_value=1000)
def clear_text():
"""
A function that clears the text in the input box when the user type a search query and press enter
"""
st.session_state["input_temp"] = st.session_state["input"]
st.session_state["input"] = ""
def get_text():
"""
Get the user input text.
Returns:
(str): The text entered by the user
"""
input_text = st.text_input("You: ", key="input", placeholder = "Your AI assistant ! Ask me anything...", label_visibility='hidden',on_change=clear_text)
return input_text
def new_chat():
"""
Clears session state and start a new chat
"""
save_current_chat()
clean_screen()
clean_memory()
st.session_state["id"] += 1
def clean_screen():
"""
Clears the current conversation screen
"""
st.session_state.conversation = []
st.session_state["input"] = ""
st.session_state["input_temp"] = ""
def clean_memory():
"""
Clears the current conversation memory
"""
st.session_state.entity_memory.store = {}
st.session_state.entity_memory.buffer.clear()
def save_current_chat():
"""
Save the current chat in st.session_state["stored_session"]
"""
saved_dict=dict()
saved_dict['conversation'] = st.session_state['conversation']
saved_dict['conversation_memory'] = pickle.dumps(st.session_state.entity_memory)
st.session_state["stored_session"][st.session_state["id"]]=saved_dict
def resume_chat(session_id):
"""
Clears session state and start a new chat
"""
save_current_chat()
clean_screen()
clean_memory()
st.session_state["id"] = session_id
st.session_state["conversation"] = st.session_state["stored_session"][session_id]["conversation"]
st.session_state.entity_memory = pickle.loads(st.session_state["stored_session"][session_id]["conversation_memory"])
st.session_state["show_new_chat_button"] = True
def show_conv():
"""
Render the current conversation in html
"""
conversation_html = ""
for entry in st.session_state.conversation:
if 'user' in entry:
conversation_html += f'<div style="margin: 10px; padding: 8px; border-radius: 5px; background-color: #8090FF; text-align: left;">🀡 {entry["user"]}</div>'
if 'chatbot' in entry:
conversation_html += f'<div style="margin: 10px; padding: 8px; border-radius: 5px; background-color: #D7BB2C; display: flex; align-items: center;">πŸ€– <pre style="color: white; background-color: #D7BB2C; padding: 8px; border-radius: 5px; max-width: calc(100% - 60px); white-space: pre-wrap; word-wrap: break-word; word-break: break-all;">{entry["chatbot"]}</pre></div>'
conversation_history.write(conversation_html, unsafe_allow_html=True)
### Main APP
# Allow the user to clear all stored conversation sessions
if st.session_state.stored_session:
if st.sidebar.button("Clear-all"):
st.session_state.stored_session={}
clean_screen()
if API_KEY :
# Create an Open AI instance
llm = OpenAIChat(
temperature=0,
openai_api_key=API_KEY,
model_name = MODEL
)
# Create conversation memory
if 'entity_memory' not in st.session_state:
st.session_state.entity_memory= ConversationEntityMemory(llm=llm, k=K)
# Create the Conversation Chain
st.session_state.Conversation = ConversationChain(llm=llm,
prompt = ENTITY_MEMORY_CONVERSATION_TEMPLATE,
memory = st.session_state.entity_memory)
else :
st.markdown('''
```
- 1. Enter API Key + Hit enter πŸ”
- 2. Ask anything via the text input widget
```
''')
st.sidebar.warning('API key required to try this app.The API key is not stored in any form.')
st.sidebar.info("Your API-key is not stored in any form by this app. However, for transparency ensure to delete your API once used.")
# Get the user input
user_input = get_text()
if st.session_state["input_temp"] :
output = st.session_state.Conversation.run(input=st.session_state["input_temp"])
st.session_state.conversation.append({"user": st.session_state["input_temp"]})
st.session_state.conversation.append({"chatbot": output})
st.session_state["show_new_chat_button"] = True
if st.session_state["show_new_chat_button"] :
st.sidebar.button("New Chat", on_click=new_chat, type='primary')
if "conversation" in st.session_state:
show_conv()
if st.session_state.stored_session.values():
# Display stored conversation sessions in the sidebar
for i, sublist in enumerate(st.session_state.stored_session.values()):
with st.sidebar.expander(label= f"Conversation-Session:{i}"):
st.button("Resume session", on_click=resume_chat,kwargs={"session_id":i},type='primary', key=f"Conversation-Session:{i}")
st.markdown(sublist)