Update app.py
Browse files
app.py
CHANGED
@@ -1,238 +1,211 @@
|
|
1 |
import gradio as gr
|
2 |
-
import pandas as pd
|
3 |
-
from datetime import datetime
|
4 |
import torch
|
5 |
-
from transformers import
|
6 |
-
import
|
7 |
-
from typing import List, Dict
|
8 |
-
import os
|
9 |
-
import time
|
10 |
import logging
|
|
|
|
|
11 |
|
12 |
# Setup logging
|
13 |
logging.basicConfig(level=logging.INFO)
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
-
|
17 |
-
torch.set_grad_enabled(False)
|
18 |
-
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
19 |
-
|
20 |
-
# Create cache directory
|
21 |
-
os.makedirs("model_cache", exist_ok=True)
|
22 |
-
|
23 |
-
class ModelHandler:
|
24 |
def __init__(self):
|
25 |
-
self.model_name = "
|
26 |
-
self.
|
27 |
-
self.
|
28 |
-
self.
|
29 |
-
self.
|
|
|
30 |
self.initialize_model()
|
31 |
|
32 |
def initialize_model(self):
|
33 |
-
while not self.initialized and self.load_attempts < self.max_attempts:
|
34 |
-
try:
|
35 |
-
logger.info(f"Loading model attempt {self.load_attempts + 1}")
|
36 |
-
self.tokenizer = T5Tokenizer.from_pretrained(
|
37 |
-
self.model_name,
|
38 |
-
model_max_length=512,
|
39 |
-
cache_dir="model_cache"
|
40 |
-
)
|
41 |
-
self.model = T5ForConditionalGeneration.from_pretrained(
|
42 |
-
self.model_name,
|
43 |
-
low_cpu_mem_usage=True,
|
44 |
-
cache_dir="model_cache"
|
45 |
-
)
|
46 |
-
self.initialized = True
|
47 |
-
logger.info("Model loaded successfully")
|
48 |
-
return True
|
49 |
-
except Exception as e:
|
50 |
-
logger.error(f"Loading attempt failed: {str(e)}")
|
51 |
-
self.load_attempts += 1
|
52 |
-
time.sleep(1)
|
53 |
-
return False
|
54 |
-
|
55 |
-
def generate_response(self, prompt: str, max_length: int = 256) -> str:
|
56 |
-
if not self.initialized:
|
57 |
-
return "Model initialization failed. Using basic responses."
|
58 |
-
|
59 |
try:
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
padding=True,
|
69 |
return_tensors="pt"
|
70 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
85 |
-
|
86 |
-
del outputs, inputs
|
87 |
gc.collect()
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
91 |
except Exception as e:
|
92 |
-
logger.error(f"
|
93 |
-
return
|
94 |
|
95 |
-
def
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
"health": "I provide general health information.",
|
100 |
-
"sleep": "Aim for 7-9 hours of sleep daily.",
|
101 |
-
"exercise": "Regular exercise is important for health.",
|
102 |
-
"diet": "Eat a balanced diet with plenty of vegetables.",
|
103 |
-
"medication": "Always follow prescribed medication schedules.",
|
104 |
-
"water": "Stay hydrated by drinking plenty of water daily.",
|
105 |
-
"stress": "Managing stress is important for overall health."
|
106 |
-
}
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
})
|
125 |
-
return True
|
126 |
-
except Exception as e:
|
127 |
-
logger.error(f"Error adding metrics: {str(e)}")
|
128 |
-
return False
|
129 |
|
130 |
-
|
131 |
-
try:
|
132 |
-
self.medications.append(medication)
|
133 |
-
return True
|
134 |
-
except Exception as e:
|
135 |
-
logger.error(f"Error adding medication: {str(e)}")
|
136 |
-
return False
|
137 |
|
138 |
-
def
|
|
|
139 |
context_parts = []
|
140 |
|
141 |
if self.metrics:
|
142 |
latest = self.metrics[-1]
|
143 |
context_parts.extend([
|
144 |
-
|
145 |
-
f"- Weight: {latest
|
146 |
-
f"- Steps: {latest
|
147 |
-
f"- Sleep: {latest
|
148 |
])
|
149 |
|
150 |
if self.medications:
|
151 |
context_parts.append("\nCurrent Medications:")
|
152 |
for med in self.medications:
|
153 |
med_info = f"- {med['Medication']} ({med['Dosage']}) at {med['Time']}"
|
154 |
-
if med
|
155 |
med_info += f" | Note: {med['Notes']}"
|
156 |
context_parts.append(med_info)
|
157 |
|
158 |
-
return "\n".join(context_parts) if context_parts else "
|
159 |
-
|
160 |
-
class HealthAssistant:
|
161 |
-
def __init__(self):
|
162 |
-
self.model = ModelHandler()
|
163 |
-
self.data = HealthData()
|
164 |
-
self.request_count = 0
|
165 |
|
166 |
-
def
|
167 |
try:
|
168 |
-
self.
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
"Provide a helpful and accurate health-related response."
|
178 |
-
)
|
179 |
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
except Exception as e:
|
190 |
-
logger.error(f"Error
|
191 |
-
return
|
192 |
|
193 |
-
class
|
194 |
def __init__(self):
|
195 |
self.assistant = HealthAssistant()
|
196 |
|
197 |
-
def
|
198 |
-
if message.strip()
|
199 |
return "", history
|
200 |
|
201 |
-
|
202 |
-
history.append([message,
|
203 |
return "", history
|
204 |
|
205 |
-
def
|
206 |
-
if not all([weight
|
207 |
-
return "β οΈ Please fill in all metrics."
|
208 |
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
return "β
Metrics saved successfully!", df
|
213 |
-
return "β Error saving metrics", None
|
214 |
|
215 |
-
def
|
216 |
if not all([name, dosage, time]):
|
217 |
-
return "β οΈ Please fill in all required fields."
|
218 |
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
'Time': time,
|
223 |
-
'Notes': notes or ''
|
224 |
-
}
|
225 |
-
if self.assistant.data.add_medication(medication):
|
226 |
-
df = pd.DataFrame(self.assistant.data.medications)
|
227 |
-
return "β
Medication added successfully!", df
|
228 |
-
return "β Error adding medication", None
|
229 |
|
230 |
def create_interface(self):
|
231 |
with gr.Blocks(title="Health Assistant", theme=gr.themes.Soft()) as demo:
|
232 |
gr.Markdown(
|
233 |
"""
|
234 |
-
# π₯ Health Assistant
|
235 |
-
|
236 |
"""
|
237 |
)
|
238 |
|
@@ -241,11 +214,11 @@ class HealthAssistantUI:
|
|
241 |
with gr.Tab("π¬ Health Chat"):
|
242 |
chatbot = gr.Chatbot(
|
243 |
height=450,
|
244 |
-
show_label=False
|
245 |
)
|
246 |
with gr.Row():
|
247 |
msg = gr.Textbox(
|
248 |
-
placeholder="
|
249 |
lines=2,
|
250 |
show_label=False,
|
251 |
scale=9
|
@@ -253,86 +226,63 @@ class HealthAssistantUI:
|
|
253 |
send_btn = gr.Button("Send", scale=1)
|
254 |
clear_btn = gr.Button("Clear Chat")
|
255 |
|
256 |
-
# Health Metrics
|
257 |
with gr.Tab("π Health Metrics"):
|
258 |
with gr.Row():
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
metrics_status = gr.Markdown()
|
265 |
-
|
266 |
-
with gr.Column():
|
267 |
-
metrics_display = gr.Dataframe(
|
268 |
-
headers=["Date", "Weight", "Steps", "Sleep"]
|
269 |
-
)
|
270 |
|
271 |
-
# Medication Manager
|
272 |
with gr.Tab("π Medication Manager"):
|
273 |
with gr.Row():
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
med_status = gr.Markdown()
|
281 |
-
|
282 |
-
with gr.Column():
|
283 |
-
meds_display = gr.Dataframe(
|
284 |
-
headers=["Medication", "Dosage", "Time", "Notes"]
|
285 |
-
)
|
286 |
|
287 |
# Event handlers
|
288 |
-
msg.submit(self.
|
289 |
-
send_btn.click(self.
|
290 |
clear_btn.click(lambda: [], None, chatbot)
|
291 |
|
292 |
metrics_btn.click(
|
293 |
-
self.
|
294 |
inputs=[weight_input, steps_input, sleep_input],
|
295 |
-
outputs=[metrics_status
|
296 |
)
|
297 |
|
298 |
med_btn.click(
|
299 |
-
self.
|
300 |
inputs=[med_name, med_dosage, med_time, med_notes],
|
301 |
-
outputs=[med_status
|
302 |
)
|
303 |
|
304 |
gr.Markdown(
|
305 |
"""
|
306 |
### β οΈ Important Note
|
307 |
-
This
|
308 |
Always consult healthcare professionals for medical advice.
|
309 |
"""
|
310 |
)
|
311 |
|
312 |
return demo
|
313 |
|
314 |
-
def cleanup():
|
315 |
-
"""Cleanup function for memory management"""
|
316 |
-
gc.collect()
|
317 |
-
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
318 |
-
|
319 |
def main():
|
320 |
try:
|
321 |
-
|
322 |
-
|
323 |
-
demo = ui.create_interface()
|
324 |
-
|
325 |
-
# Register cleanup
|
326 |
-
demo.load(cleanup)
|
327 |
-
|
328 |
-
# Launch app
|
329 |
demo.launch(
|
330 |
share=False,
|
331 |
enable_queue=True,
|
332 |
max_threads=4
|
333 |
)
|
334 |
except Exception as e:
|
335 |
-
logger.error(f"Error starting
|
336 |
|
337 |
if __name__ == "__main__":
|
338 |
main()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import torch
|
3 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
4 |
+
from qwen_vl_utils import process_vision_info
|
|
|
|
|
|
|
5 |
import logging
|
6 |
+
from typing import List, Dict
|
7 |
+
import gc
|
8 |
|
9 |
# Setup logging
|
10 |
logging.basicConfig(level=logging.INFO)
|
11 |
logger = logging.getLogger(__name__)
|
12 |
|
13 |
+
class HealthAssistant:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def __init__(self):
|
15 |
+
self.model_name = "Qwen/Qwen2-VL-7B-Instruct"
|
16 |
+
self.model = None
|
17 |
+
self.tokenizer = None
|
18 |
+
self.processor = None
|
19 |
+
self.metrics = []
|
20 |
+
self.medications = []
|
21 |
self.initialize_model()
|
22 |
|
23 |
def initialize_model(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
try:
|
25 |
+
logger.info("Loading Qwen2-VL model...")
|
26 |
+
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
|
27 |
+
self.model_name,
|
28 |
+
torch_dtype=torch.bfloat16,
|
29 |
+
attn_implementation="flash_attention_2",
|
30 |
+
device_map="auto"
|
31 |
+
)
|
32 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
33 |
+
self.processor = AutoProcessor.from_pretrained(
|
34 |
+
self.model_name,
|
35 |
+
min_pixels=256*28*28,
|
36 |
+
max_pixels=1280*28*28
|
37 |
+
)
|
38 |
+
logger.info("Model loaded successfully")
|
39 |
+
except Exception as e:
|
40 |
+
logger.error(f"Error loading model: {e}")
|
41 |
+
raise
|
42 |
|
43 |
+
def generate_response(self, message: str, history: List = None) -> str:
|
44 |
+
try:
|
45 |
+
# Format conversation with health context
|
46 |
+
messages = self._format_messages(message, history)
|
47 |
+
|
48 |
+
# Prepare for inference
|
49 |
+
text = self.processor.apply_chat_template(
|
50 |
+
messages,
|
51 |
+
tokenize=False,
|
52 |
+
add_generation_prompt=True
|
53 |
+
)
|
54 |
+
|
55 |
+
# Since we're not using images in this case
|
56 |
+
image_inputs, video_inputs = [], []
|
57 |
+
|
58 |
+
# Process inputs
|
59 |
+
inputs = self.processor(
|
60 |
+
text=[text],
|
61 |
+
images=image_inputs,
|
62 |
+
videos=video_inputs,
|
63 |
padding=True,
|
64 |
return_tensors="pt"
|
65 |
)
|
66 |
+
inputs = inputs.to(self.model.device)
|
67 |
+
|
68 |
+
# Generate response
|
69 |
+
generated_ids = self.model.generate(
|
70 |
+
**inputs,
|
71 |
+
max_new_tokens=256,
|
72 |
+
do_sample=True,
|
73 |
+
temperature=0.7,
|
74 |
+
top_p=0.9
|
75 |
+
)
|
76 |
|
77 |
+
# Decode response
|
78 |
+
generated_ids_trimmed = [
|
79 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
80 |
+
]
|
81 |
+
output_text = self.processor.batch_decode(
|
82 |
+
generated_ids_trimmed,
|
83 |
+
skip_special_tokens=True,
|
84 |
+
clean_up_tokenization_spaces=False
|
85 |
+
)[0]
|
86 |
+
|
87 |
+
# Cleanup
|
88 |
+
del inputs, generated_ids, generated_ids_trimmed
|
|
|
|
|
|
|
89 |
gc.collect()
|
90 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
91 |
+
|
92 |
+
return output_text.strip()
|
93 |
+
|
94 |
except Exception as e:
|
95 |
+
logger.error(f"Error generating response: {e}")
|
96 |
+
return "I apologize, but I encountered an error. Please try again."
|
97 |
|
98 |
+
def _format_messages(self, message: str, history: List = None) -> List[Dict]:
|
99 |
+
"""Format messages for the Qwen2-VL model"""
|
100 |
+
# Add system context
|
101 |
+
messages = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
# Add health context
|
104 |
+
health_context = self._get_health_context()
|
105 |
+
if health_context:
|
106 |
+
messages.append({
|
107 |
+
"role": "system",
|
108 |
+
"content": [{"type": "text", "text": f"Current health information:\n{health_context}"}]
|
109 |
+
})
|
110 |
|
111 |
+
# Add conversation history
|
112 |
+
if history:
|
113 |
+
for user_msg, assistant_msg in history[-3:]: # Last 3 exchanges
|
114 |
+
messages.extend([
|
115 |
+
{"role": "user", "content": [{"type": "text", "text": user_msg}]},
|
116 |
+
{"role": "assistant", "content": [{"type": "text", "text": assistant_msg}]}
|
117 |
+
])
|
118 |
|
119 |
+
# Add current message
|
120 |
+
messages.append({
|
121 |
+
"role": "user",
|
122 |
+
"content": [{"type": "text", "text": message}]
|
123 |
+
})
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
+
return messages
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
+
def _get_health_context(self) -> str:
|
128 |
+
"""Get health metrics and medications context"""
|
129 |
context_parts = []
|
130 |
|
131 |
if self.metrics:
|
132 |
latest = self.metrics[-1]
|
133 |
context_parts.extend([
|
134 |
+
"Recent Health Metrics:",
|
135 |
+
f"- Weight: {latest.get('Weight', 'N/A')} kg",
|
136 |
+
f"- Steps: {latest.get('Steps', 'N/A')}",
|
137 |
+
f"- Sleep: {latest.get('Sleep', 'N/A')} hours"
|
138 |
])
|
139 |
|
140 |
if self.medications:
|
141 |
context_parts.append("\nCurrent Medications:")
|
142 |
for med in self.medications:
|
143 |
med_info = f"- {med['Medication']} ({med['Dosage']}) at {med['Time']}"
|
144 |
+
if med.get('Notes'):
|
145 |
med_info += f" | Note: {med['Notes']}"
|
146 |
context_parts.append(med_info)
|
147 |
|
148 |
+
return "\n".join(context_parts) if context_parts else ""
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
+
def add_metrics(self, weight: float, steps: int, sleep: float) -> bool:
|
151 |
try:
|
152 |
+
self.metrics.append({
|
153 |
+
'Weight': weight,
|
154 |
+
'Steps': steps,
|
155 |
+
'Sleep': sleep
|
156 |
+
})
|
157 |
+
return True
|
158 |
+
except Exception as e:
|
159 |
+
logger.error(f"Error adding metrics: {e}")
|
160 |
+
return False
|
|
|
|
|
161 |
|
162 |
+
def add_medication(self, name: str, dosage: str, time: str, notes: str = "") -> bool:
|
163 |
+
try:
|
164 |
+
self.medications.append({
|
165 |
+
'Medication': name,
|
166 |
+
'Dosage': dosage,
|
167 |
+
'Time': time,
|
168 |
+
'Notes': notes
|
169 |
+
})
|
170 |
+
return True
|
171 |
except Exception as e:
|
172 |
+
logger.error(f"Error adding medication: {e}")
|
173 |
+
return False
|
174 |
|
175 |
+
class GradioInterface:
|
176 |
def __init__(self):
|
177 |
self.assistant = HealthAssistant()
|
178 |
|
179 |
+
def chat_response(self, message: str, history: List) -> tuple:
|
180 |
+
if not message.strip():
|
181 |
return "", history
|
182 |
|
183 |
+
response = self.assistant.generate_response(message, history)
|
184 |
+
history.append([message, response])
|
185 |
return "", history
|
186 |
|
187 |
+
def add_health_metrics(self, weight: float, steps: int, sleep: float) -> str:
|
188 |
+
if not all([weight, steps, sleep]):
|
189 |
+
return "β οΈ Please fill in all metrics."
|
190 |
|
191 |
+
if self.assistant.add_metrics(weight, steps, sleep):
|
192 |
+
return "β
Health metrics saved successfully!"
|
193 |
+
return "β Error saving metrics."
|
|
|
|
|
194 |
|
195 |
+
def add_medication_info(self, name: str, dosage: str, time: str, notes: str) -> str:
|
196 |
if not all([name, dosage, time]):
|
197 |
+
return "β οΈ Please fill in all required fields."
|
198 |
|
199 |
+
if self.assistant.add_medication(name, dosage, time, notes):
|
200 |
+
return "β
Medication added successfully!"
|
201 |
+
return "β Error adding medication."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
def create_interface(self):
|
204 |
with gr.Blocks(title="Health Assistant", theme=gr.themes.Soft()) as demo:
|
205 |
gr.Markdown(
|
206 |
"""
|
207 |
+
# π₯ AI Health Assistant
|
208 |
+
Powered by Qwen2-VL for intelligent health guidance and monitoring.
|
209 |
"""
|
210 |
)
|
211 |
|
|
|
214 |
with gr.Tab("π¬ Health Chat"):
|
215 |
chatbot = gr.Chatbot(
|
216 |
height=450,
|
217 |
+
show_label=False
|
218 |
)
|
219 |
with gr.Row():
|
220 |
msg = gr.Textbox(
|
221 |
+
placeholder="Ask your health question... (Press Enter)",
|
222 |
lines=2,
|
223 |
show_label=False,
|
224 |
scale=9
|
|
|
226 |
send_btn = gr.Button("Send", scale=1)
|
227 |
clear_btn = gr.Button("Clear Chat")
|
228 |
|
229 |
+
# Health Metrics
|
230 |
with gr.Tab("π Health Metrics"):
|
231 |
with gr.Row():
|
232 |
+
weight_input = gr.Number(label="Weight (kg)")
|
233 |
+
steps_input = gr.Number(label="Steps")
|
234 |
+
sleep_input = gr.Number(label="Hours Slept")
|
235 |
+
metrics_btn = gr.Button("Save Metrics")
|
236 |
+
metrics_status = gr.Markdown()
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
+
# Medication Manager
|
239 |
with gr.Tab("π Medication Manager"):
|
240 |
with gr.Row():
|
241 |
+
med_name = gr.Textbox(label="Medication Name")
|
242 |
+
med_dosage = gr.Textbox(label="Dosage")
|
243 |
+
med_time = gr.Textbox(label="Time (e.g., 9:00 AM)")
|
244 |
+
med_notes = gr.Textbox(label="Notes (optional)")
|
245 |
+
med_btn = gr.Button("Add Medication")
|
246 |
+
med_status = gr.Markdown()
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
# Event handlers
|
249 |
+
msg.submit(self.chat_response, [msg, chatbot], [msg, chatbot])
|
250 |
+
send_btn.click(self.chat_response, [msg, chatbot], [msg, chatbot])
|
251 |
clear_btn.click(lambda: [], None, chatbot)
|
252 |
|
253 |
metrics_btn.click(
|
254 |
+
self.add_health_metrics,
|
255 |
inputs=[weight_input, steps_input, sleep_input],
|
256 |
+
outputs=[metrics_status]
|
257 |
)
|
258 |
|
259 |
med_btn.click(
|
260 |
+
self.add_medication_info,
|
261 |
inputs=[med_name, med_dosage, med_time, med_notes],
|
262 |
+
outputs=[med_status]
|
263 |
)
|
264 |
|
265 |
gr.Markdown(
|
266 |
"""
|
267 |
### β οΈ Important Note
|
268 |
+
This AI assistant provides general health information only.
|
269 |
Always consult healthcare professionals for medical advice.
|
270 |
"""
|
271 |
)
|
272 |
|
273 |
return demo
|
274 |
|
|
|
|
|
|
|
|
|
|
|
275 |
def main():
|
276 |
try:
|
277 |
+
interface = GradioInterface()
|
278 |
+
demo = interface.create_interface()
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
demo.launch(
|
280 |
share=False,
|
281 |
enable_queue=True,
|
282 |
max_threads=4
|
283 |
)
|
284 |
except Exception as e:
|
285 |
+
logger.error(f"Error starting application: {e}")
|
286 |
|
287 |
if __name__ == "__main__":
|
288 |
main()
|