VHA1 / app.py
lukiod's picture
Update app.py
f0cbaa0 verified
raw
history blame
10.2 kB
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import logging
from typing import List, Dict
import gc
import os
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Force CPU usage and set memory optimizations
torch.set_num_threads(4)
class HealthAssistant:
def __init__(self, use_smaller_model=True):
if use_smaller_model:
self.model_name = "facebook/opt-125m"
else:
self.model_name = "Qwen/Qwen2-VL-7B-Instruct"
self.model = None
self.tokenizer = None
self.metrics = []
self.medications = []
self.initialize_model()
def initialize_model(self):
try:
logger.info(f"Starting model initialization: {self.model_name}")
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
trust_remote_code=True
)
logger.info("Tokenizer loaded")
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
torch_dtype=torch.float32,
low_cpu_mem_usage=True,
trust_remote_code=True
)
self.model = self.model.to("cpu")
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
logger.info("Model loaded successfully")
return True
except Exception as e:
logger.error(f"Error in model initialization: {str(e)}")
raise
def is_initialized(self):
return (self.model is not None and
self.tokenizer is not None and
hasattr(self.model, 'generate'))
def generate_response(self, message: str, history: List = None) -> str:
try:
if not self.is_initialized():
return "System is still initializing. Please try again in a moment."
# Prepare prompt
prompt = self._prepare_prompt(message, history)
# Tokenize
inputs = self.tokenizer(
prompt,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512
)
# Generate
with torch.no_grad():
outputs = self.model.generate(
inputs["input_ids"],
max_new_tokens=128,
num_beams=1,
do_sample=True,
temperature=0.7,
top_p=0.9,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id
)
# Decode
response = self.tokenizer.decode(
outputs[0][inputs["input_ids"].shape[1]:],
skip_special_tokens=True
)
# Cleanup
del outputs, inputs
gc.collect()
return response.strip()
except Exception as e:
logger.error(f"Error generating response: {str(e)}")
return "I apologize, but I encountered an error. Please try again."
def _prepare_prompt(self, message: str, history: List = None) -> str:
parts = [
"You are a helpful healthcare assistant providing accurate and helpful medical information.",
self._get_health_context() or "No health data available yet."
]
if history:
parts.append("Previous conversation:")
for h in history[-3:]:
parts.extend([
f"User: {h[0]}",
f"Assistant: {h[1]}"
])
parts.extend([
f"User: {message}",
"Assistant:"
])
return "\n\n".join(parts)
def _get_health_context(self) -> str:
context_parts = []
if self.metrics:
latest = self.metrics[-1]
context_parts.extend([
"Recent Health Metrics:",
f"- Weight: {latest.get('Weight', 'N/A')} kg",
f"- Steps: {latest.get('Steps', 'N/A')}",
f"- Sleep: {latest.get('Sleep', 'N/A')} hours"
])
if self.medications:
context_parts.append("\nCurrent Medications:")
for med in self.medications:
med_info = f"- {med['Medication']} ({med['Dosage']}) at {med['Time']}"
if med.get('Notes'):
med_info += f" | Note: {med['Notes']}"
context_parts.append(med_info)
return "\n".join(context_parts) if context_parts else ""
def add_metrics(self, weight: float, steps: int, sleep: float) -> bool:
try:
self.metrics.append({
'Weight': weight,
'Steps': steps,
'Sleep': sleep
})
return True
except Exception as e:
logger.error(f"Error adding metrics: {e}")
return False
def add_medication(self, name: str, dosage: str, time: str, notes: str = "") -> bool:
try:
self.medications.append({
'Medication': name,
'Dosage': dosage,
'Time': time,
'Notes': notes
})
return True
except Exception as e:
logger.error(f"Error adding medication: {e}")
return False
class GradioInterface:
def __init__(self):
try:
logger.info("Initializing Health Assistant...")
self.assistant = HealthAssistant(use_smaller_model=True)
if not self.assistant.is_initialized():
raise RuntimeError("Health Assistant failed to initialize properly")
logger.info("Health Assistant initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize Health Assistant: {e}")
raise
def chat_response(self, message: str, history: List) -> tuple:
if not message.strip():
return "", history
response = self.assistant.generate_response(message, history)
history.append([message, response])
return "", history
def add_health_metrics(self, weight: float, steps: int, sleep: float) -> str:
if not all([weight is not None, steps is not None, sleep is not None]):
return "⚠️ Please fill in all metrics."
if self.assistant.add_metrics(weight, steps, sleep):
return "βœ… Health metrics saved successfully!"
return "❌ Error saving metrics."
def add_medication_info(self, name: str, dosage: str, time: str, notes: str) -> str:
if not all([name, dosage, time]):
return "⚠️ Please fill in all required fields."
if self.assistant.add_medication(name, dosage, time, notes):
return "βœ… Medication added successfully!"
return "❌ Error adding medication."
def create_interface(self):
with gr.Blocks(title="Health Assistant") as demo:
gr.Markdown("# πŸ₯ AI Health Assistant")
with gr.Tabs():
# Chat Interface
with gr.Tab("πŸ’¬ Health Chat"):
chatbot = gr.Chatbot(
value=[],
height=450
)
with gr.Row():
msg = gr.Textbox(
placeholder="Ask your health question... (Press Enter)",
lines=2,
show_label=False,
scale=9
)
send_btn = gr.Button("Send", scale=1)
clear_btn = gr.Button("Clear Chat")
# Health Metrics
with gr.Tab("πŸ“Š Health Metrics"):
with gr.Row():
weight_input = gr.Number(label="Weight (kg)")
steps_input = gr.Number(label="Steps")
sleep_input = gr.Number(label="Hours Slept")
metrics_btn = gr.Button("Save Metrics")
metrics_status = gr.Markdown()
# Medication Manager
with gr.Tab("πŸ’Š Medication Manager"):
with gr.Row():
med_name = gr.Textbox(label="Medication Name")
med_dosage = gr.Textbox(label="Dosage")
med_time = gr.Textbox(label="Time (e.g., 9:00 AM)")
med_notes = gr.Textbox(label="Notes (optional)")
med_btn = gr.Button("Add Medication")
med_status = gr.Markdown()
# Event handlers
msg.submit(self.chat_response, [msg, chatbot], [msg, chatbot])
send_btn.click(self.chat_response, [msg, chatbot], [msg, chatbot])
clear_btn.click(lambda: [], None, chatbot)
metrics_btn.click(
self.add_health_metrics,
inputs=[weight_input, steps_input, sleep_input],
outputs=[metrics_status]
)
med_btn.click(
self.add_medication_info,
inputs=[med_name, med_dosage, med_time, med_notes],
outputs=[med_status]
)
demo.queue()
return demo
def main():
try:
logger.info("Starting application...")
interface = GradioInterface()
demo = interface.create_interface()
logger.info("Launching Gradio interface...")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
except Exception as e:
logger.error(f"Error starting application: {e}")
raise
if __name__ == "__main__":
main()