Spaces:
Sleeping
Sleeping
import json | |
from typing import Any, Dict, Union | |
import requests | |
from llama_cpp import json_schema_to_gbnf # Only used directly to convert the JSON schema to GBNF, | |
# The main interface is the HTTP server, not the library directly. | |
def llm_streaming(prompt:str, pydantic_model_class, return_pydantic_object=False) -> Union[str, Dict[str, Any]]: | |
schema = pydantic_model_class.model_json_schema() | |
# Optional example field from schema, is not needed for the grammar generation | |
if "example" in schema: | |
del schema["example"] | |
json_schema = json.dumps(schema) | |
grammar = json_schema_to_gbnf(json_schema) | |
payload = { | |
"stream": True, | |
"max_tokens": 1000, | |
"grammar": grammar, | |
"temperature": 1.0, | |
"messages": [ | |
{ | |
"role": "user", | |
"content": prompt | |
} | |
], | |
} | |
headers = { | |
"Content-Type": "application/json", | |
} | |
response = requests.post("http://localhost:5834/v1/chat/completions" | |
, headers=headers, json=payload, stream=True) | |
output_text = "" | |
for chunk in response.iter_lines(): | |
if chunk: | |
chunk = chunk.decode("utf-8") | |
if chunk.startswith("data: "): | |
chunk = chunk.split("data: ")[1] | |
if chunk.strip() == "[DONE]": | |
break | |
chunk = json.loads(chunk) | |
new_token = chunk.get('choices')[0].get('delta').get('content') | |
if new_token: | |
output_text = output_text + new_token | |
print(new_token,sep='',end='',flush=True) | |
#else: | |
# raise Exception(f"Parse error, expecting stream:{str(chunk)}") | |
if return_pydantic_object: | |
model_object = pydantic_model_class.model_validate_json(output_text) | |
return model_object | |
else: | |
json_output = json.loads(output_text) | |
return json_output | |
def replace_text(template: str, replacements: dict) -> str: | |
for key, value in replacements.items(): | |
template = template.replace(f"{{{key}}}", value) | |
return template | |
def query_ai_prompt(prompt, replacements, model_class): | |
prompt = replace_text(prompt, replacements) | |
#print('prompt') | |
#print(prompt) | |
return llm_streaming(prompt, model_class) | |