lukemelas's picture
Update app
e11cde7
raw
history blame
7.54 kB
import io
import os.path
import sys
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import scipy.sparse
import torch
import torch.nn.functional as F
import torchvision
import torchvision.transforms.functional as TF
from gradio.inputs import Image as GradioInputImage
from gradio.outputs import Image as GradioOutputImage
from PIL import Image
from scipy.sparse.linalg import eigsh
from skimage.color import label2rgb
from torch.utils.hooks import RemovableHandle
from torchvision import transforms
from torchvision.utils import make_grid
from matplotlib.pyplot import get_cmap
def get_model(name: str):
if 'dino' in name:
model = torch.hub.load('facebookresearch/dino:main', name)
model.fc = torch.nn.Identity()
val_transform = get_transform(name)
patch_size = model.patch_embed.patch_size
num_heads = model.blocks[0].attn.num_heads
elif name in ['mocov3_vits16', 'mocov3_vitb16']:
model = torch.hub.load('facebookresearch/dino:main', name.replace('mocov3', 'dino'))
checkpoint_file, size_char = {
'mocov3_vits16': ('vit-s-300ep-timm-format.pth', 's'),
'mocov3_vitb16': ('vit-b-300ep-timm-format.pth', 'b'),
}[name]
url = f'https://dl.fbaipublicfiles.com/moco-v3/vit-{size_char}-300ep/vit-{size_char}-300ep.pth.tar'
checkpoint = torch.hub.load_state_dict_from_url(url)
model.load_state_dict(checkpoint['model'])
model.fc = torch.nn.Identity()
val_transform = get_transform(name)
patch_size = model.patch_embed.patch_size
num_heads = model.blocks[0].attn.num_heads
else:
raise ValueError(f'Unsupported model: {name}')
model = model.eval()
return model, val_transform, patch_size, num_heads
def get_transform(name: str):
if any(x in name for x in ('dino', 'mocov3', 'convnext', )):
normalize = transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
transform = transforms.Compose([transforms.ToTensor(), normalize])
else:
raise NotImplementedError()
return transform
def get_diagonal(W: scipy.sparse.csr_matrix, threshold: float = 1e-12):
D = W.dot(np.ones(W.shape[1], W.dtype))
D[D < threshold] = 1.0 # Prevent division by zero.
D = scipy.sparse.diags(D)
return D
# Parameters
model_name = 'dino_vitb16' # TODOL Figure out how to make this user-editable
K = 5
# Fixed parameters
MAX_SIZE = 384
# Load model
model, val_transform, patch_size, num_heads = get_model(model_name)
# GPU
if torch.cuda.is_available():
print("CUDA is available, using GPU.")
device = torch.device("cuda")
model.to(device)
else:
print("CUDA is not available, using CPU.")
device = torch.device("cpu")
@torch.no_grad()
def segment(inp: Image):
# NOTE: The image is already resized to the desired size.
# Preprocess image
images: torch.Tensor = val_transform(inp)
images = images.unsqueeze(0).to(device)
# Add hook
which_block = -1
if 'dino' in model_name or 'mocov3' in model_name:
feat_out = {}
def hook_fn_forward_qkv(module, input, output):
feat_out["qkv"] = output
handle: RemovableHandle = model._modules["blocks"][which_block]._modules["attn"]._modules["qkv"].register_forward_hook(
hook_fn_forward_qkv
)
else:
raise ValueError(model_name)
# Reshape image
P = patch_size
B, C, H, W = images.shape
H_patch, W_patch = H // P, W // P
H_pad, W_pad = H_patch * P, W_patch * P
T = H_patch * W_patch + 1 # number of tokens, add 1 for [CLS]
# Crop image to be a multiple of the patch size
images = images[:, :, :H_pad, :W_pad]
# Extract features
if 'dino' in model_name or 'mocov3' in model_name:
model.get_intermediate_layers(images)[0].squeeze(0)
output_qkv = feat_out["qkv"].reshape(B, T, 3, num_heads, -1 // num_heads).permute(2, 0, 3, 1, 4)
feats = output_qkv[1].transpose(1, 2).reshape(B, T, -1)[:, 1:, :].squeeze(0)
else:
raise ValueError(model_name)
# Remove hook from the model
handle.remove()
# Normalize features
normalize = True
if normalize:
feats = F.normalize(feats, p=2, dim=-1)
# Compute affinity matrix
W_feat = (feats @ feats.T)
# Feature affinities
threshold_at_zero = True
if threshold_at_zero:
W_feat = (W_feat * (W_feat > 0))
W_feat = W_feat / W_feat.max() # NOTE: If features are normalized, this naturally does nothing
W_feat = W_feat.cpu().numpy()
# # NOTE: Here is where we would add the color information. For simplicity, we will not add it here.
# W_comb = W_feat + W_color * image_color_lambda # combination
# D_comb = np.array(get_diagonal(W_comb).todense()) # is dense or sparse faster? not sure, should check
# Diagonal
W_comb = W_feat
D_comb = np.array(get_diagonal(W_comb).todense()) # is dense or sparse faster? not sure, should check
# Compute eigenvectors
try:
eigenvalues, eigenvectors = eigsh(D_comb - W_comb, k=(K + 1), sigma=0, which='LM', M=D_comb)
except:
eigenvalues, eigenvectors = eigsh(D_comb - W_comb, k=(K + 1), which='SM', M=D_comb)
eigenvalues = torch.from_numpy(eigenvalues)
eigenvectors = torch.from_numpy(eigenvectors.T).float()
# Resolve sign ambiguity
for k in range(eigenvectors.shape[0]):
if 0.5 < torch.mean((eigenvectors[k] > 0).float()).item() < 1.0: # reverse segment
eigenvectors[k] = 0 - eigenvectors[k]
# Arrange eigenvectors into grid
cmap = get_cmap('viridis')
output_images = []
for i in range(1, K + 1):
eigenvector = eigenvectors[i].reshape(1, 1, H_patch, W_patch) # .reshape(1, 1, H_pad, W_pad)
eigenvector: torch.Tensor = F.interpolate(eigenvector, size=(H_pad, W_pad), mode='bilinear', align_corners=False) # slightly off, but for visualizations this is okay
buffer = io.BytesIO()
plt.imsave(buffer, eigenvector.squeeze().numpy(), format='png') # save to a temporary location
buffer.seek(0)
eigenvector_vis = Image.open(buffer).convert('RGB')
# eigenvector_vis = TF.to_tensor(eigenvector_vis).unsqueeze(0)
eigenvector_vis = np.array(eigenvector_vis)
output_images.append(eigenvector_vis)
# output_images = torch.cat(output_images, dim=0)
# output_images = make_grid(output_images, nrow=8, pad_value=1)
# # Postprocess for Gradio
# output_images = np.array(TF.to_pil_image(output_images))
print(f'{len(output_images)=}')
return output_images
# Placeholders
input_placeholders = GradioInputImage(source="upload", tool="editor", type="pil")
# output_placeholders = GradioOutputImage(type="numpy", label=f"Eigenvectors")
output_placeholders = [GradioOutputImage(type="numpy", label=f"Eigenvector {i}") for i in range(K)]
# Metadata
examples = [f"examples/{stem}.jpg" for stem in [
'2008_000099', '2008_000499', '2007_009446', '2007_001586', '2010_001256', '2008_000764', '2008_000705', # '2007_000039'
]]
title = "Deep Spectral Segmentation"
description = "Deep spectral segmentation..."
thumbnail = "https://raw.githubusercontent.com/gradio-app/hub-echonet/master/thumbnail.png"
# Gradio
gr.Interface(
segment,
input_placeholders,
output_placeholders,
examples=examples,
allow_flagging=False,
analytics_enabled=False,
title=title,
description=description,
thumbnail=thumbnail
).launch()