lukelike1001 commited on
Commit
0fc83e6
1 Parent(s): 4633480

neater output

Browse files
Files changed (1) hide show
  1. app.py +4 -15
app.py CHANGED
@@ -25,22 +25,11 @@ def predict_plant(path):
25
  img_array = tf.keras.utils.img_to_array(img)
26
  img_array = tf.expand_dims(img_array, 0)
27
 
28
- # find the top three likeliest plants based on probabilities
29
  predictions = model.predict(img_array)
30
  score = tf.nn.softmax(predictions[0])
31
- top_three = np.array(score).argsort()[-3:][::-1]
32
- numpy_array = score.numpy()
33
-
34
- # convert the folder names into English words then return the three likeliest probabilities
35
- output = []
36
- for i in top_three:
37
- words = class_names[i].split("_")
38
- name = " ".join([word.capitalize() for word in words])
39
- output.append(
40
- "This image likely belongs to {} with {:.2f}% confidence."
41
- .format(name, 100 * numpy_array[i])
42
- )
43
- return "\n".join(output)
44
 
45
  # describe the model
46
  title = "Leaftracker Interactive Model"
@@ -54,7 +43,7 @@ description = """Leaftracker is an image classification model that differentiate
54
  app = gr.Interface(
55
  fn=predict_plant,
56
  inputs=gr.Image(type="filepath"),
57
- outputs="text",
58
  flagging_options=["incorrect", "other"],
59
  title=title,
60
  description=description,
 
25
  img_array = tf.keras.utils.img_to_array(img)
26
  img_array = tf.expand_dims(img_array, 0)
27
 
28
+ # find the confidence probability for each plant
29
  predictions = model.predict(img_array)
30
  score = tf.nn.softmax(predictions[0])
31
+ confidences = {class_names[i]: float(score[i]) for i in range(len(class_names))}
32
+ return confidences
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  # describe the model
35
  title = "Leaftracker Interactive Model"
 
43
  app = gr.Interface(
44
  fn=predict_plant,
45
  inputs=gr.Image(type="filepath"),
46
+ outputs=gr.Label(num_top_classes=3),
47
  flagging_options=["incorrect", "other"],
48
  title=title,
49
  description=description,