147-chatbot / app.py
lukaslazarcik's picture
Create app.py
192ef5e
from pathlib import Path
from llama_index import ServiceContext, download_loader, GPTVectorStoreIndex, LLMPredictor
from llama_index import StorageContext, load_index_from_storage
from langchain import OpenAI
import gradio as gr
import os
# My personal OpenAI API key - do not misuse :P
os.environ["OPENAI_API_KEY"] = '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'
num_outputs = 512
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0.4, model_name="text-davinci-003", max_tokens=num_outputs))
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor)
def construct_index():
SimpleCSVReader = download_loader("SimpleCSVReader")
loader = SimpleCSVReader()
docs = loader.load_data(file=Path('./docs/articles.csv'))
index = GPTVectorStoreIndex.from_documents(docs, service_context=service_context)
index.storage_context.persist()
return index
def chatbot(input_text):
storage_context = StorageContext.from_defaults(persist_dir=Path("./storage/"))
index = load_index_from_storage(storage_context, service_context=service_context)
query_engine = index.as_query_engine(response_mode='compact')
response = query_engine.query(input_text)
return response.response
# uncomment on first run, when generating an index
index = construct_index()
iface = gr.Interface(fn=chatbot,
inputs=gr.inputs.Textbox(lines=7, label="Enter your text"),
outputs="text",
title="147 AI Chatbot")
iface.launch()
# with gr.Blocks() as demo:
# chatbot = gr.Chatbot()
# msg = gr.Textbox()
# clear = gr.Button("Clear")
# def respond(message, chat_history):
# storage_context = StorageContext.from_defaults(persist_dir=Path("./storage/"))
# index = load_index_from_storage(storage_context, service_context=service_context)
# query_engine = index.as_query_engine(response_mode='compact')
# response = query_engine.query(message)
# chat_history.append((message, response))
# return "", chat_history
# msg.submit(respond, [msg, chatbot], [msg, chatbot])
# clear.click(lambda: None, None, chatbot, queue=False)
# demo.launch()