Spaces:
Sleeping
Sleeping
| #!/usr/bin/env python | |
| from __future__ import annotations | |
| import pathlib | |
| import gradio as gr | |
| import mediapipe as mp | |
| import numpy as np | |
| mp_drawing = mp.solutions.drawing_utils | |
| mp_drawing_styles = mp.solutions.drawing_styles | |
| mp_pose = mp.solutions.pose | |
| TITLE = "MediaPipe Human Pose Estimation" | |
| DESCRIPTION = "https://google.github.io/mediapipe/" | |
| def run( | |
| image: np.ndarray, | |
| model_complexity: int, | |
| enable_segmentation: bool, | |
| min_detection_confidence: float, | |
| background_color: str, | |
| ) -> np.ndarray: | |
| with mp_pose.Pose( | |
| static_image_mode=True, | |
| model_complexity=model_complexity, | |
| enable_segmentation=enable_segmentation, | |
| min_detection_confidence=min_detection_confidence, | |
| ) as pose: | |
| results = pose.process(image) | |
| res = image[:, :, ::-1].copy() | |
| if enable_segmentation: | |
| if background_color == "white": | |
| bg_color = 255 | |
| elif background_color == "black": | |
| bg_color = 0 | |
| elif background_color == "green": | |
| bg_color = (0, 255, 0) # type: ignore | |
| else: | |
| raise ValueError | |
| if results.segmentation_mask is not None: | |
| res[results.segmentation_mask <= 0.1] = bg_color | |
| else: | |
| res[:] = bg_color | |
| mp_drawing.draw_landmarks( | |
| res, | |
| results.pose_landmarks, | |
| mp_pose.POSE_CONNECTIONS, | |
| landmark_drawing_spec=mp_drawing_styles.get_default_pose_landmarks_style(), | |
| ) | |
| return res[:, :, ::-1] | |
| model_complexities = list(range(3)) | |
| background_colors = ["white", "black", "green"] | |
| image_paths = sorted(pathlib.Path("images").rglob("*.jpg")) | |
| examples = [[path, model_complexities[1], True, 0.5, background_colors[0]] for path in image_paths] | |
| demo = gr.Interface( | |
| fn=run, | |
| inputs=[ | |
| gr.Image(label="Input", type="numpy"), | |
| gr.Radio(label="Model Complexity", choices=model_complexities, type="index", value=model_complexities[1]), | |
| gr.Checkbox(label="Enable Segmentation", value=True), | |
| gr.Slider(label="Minimum Detection Confidence", minimum=0, maximum=1, step=0.05, value=0.5), | |
| gr.Radio(label="Background Color", choices=background_colors, type="value", value=background_colors[0]), | |
| ], | |
| outputs=gr.Image(label="Output"), | |
| examples=examples, | |
| title=TITLE, | |
| description=DESCRIPTION, | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue().launch() | |