luisotorres
commited on
Commit
·
7660838
1
Parent(s):
2da6be9
Updated Code
Browse files- __pycache__/functions.cpython-312.pyc +0 -0
- __pycache__/ui.cpython-312.pyc +0 -0
- app.py +4 -411
- functions.py +324 -0
- ui.py +110 -0
__pycache__/functions.cpython-312.pyc
ADDED
Binary file (14.3 kB). View file
|
|
__pycache__/ui.cpython-312.pyc
ADDED
Binary file (6.8 kB). View file
|
|
app.py
CHANGED
@@ -1,420 +1,13 @@
|
|
1 |
-
# Importing necessary libraries
|
2 |
import streamlit as st
|
3 |
-
from
|
4 |
-
import yfinance as yf
|
5 |
-
import numpy as np
|
6 |
-
import pandas as pd
|
7 |
-
import plotly.express as px
|
8 |
-
import plotly.graph_objs as go
|
9 |
-
import plotly.subplots as sp
|
10 |
-
from plotly.subplots import make_subplots
|
11 |
-
import plotly.figure_factory as ff
|
12 |
-
import plotly.io as pio
|
13 |
-
from IPython.display import display
|
14 |
-
from plotly.offline import init_notebook_mode
|
15 |
-
init_notebook_mode(connected=True)
|
16 |
-
|
17 |
-
# Hiding Warnings
|
18 |
-
import warnings
|
19 |
-
warnings.filterwarnings('ignore')
|
20 |
-
|
21 |
-
def perform_portfolio_analysis(df, tickers_weights):
|
22 |
-
"""
|
23 |
-
This function takes historical stock data and the weights of the securities in the portfolio,
|
24 |
-
It calculates individual security returns, cumulative returns, volatility, and Sharpe Ratios.
|
25 |
-
It then visualizes this data, showing historical performance and a risk-reward plot.
|
26 |
-
|
27 |
-
Parameters:
|
28 |
-
- df (pd.DataFrame): DataFrame containing historical stock data with securities as columns.
|
29 |
-
- tickers_weights (dict): A dictionary where keys are ticker symbols (str) and values are their
|
30 |
-
respective weights (float)in the portfolio.
|
31 |
-
|
32 |
-
Returns:
|
33 |
-
- fig1: A Plotly Figure with two subplots:
|
34 |
-
1. Line plot showing the historical returns of each security in the portfolio.
|
35 |
-
2. Plot showing the annualized volatility and last cumulative return of each security
|
36 |
-
colored by their respective Sharpe Ratio.
|
37 |
-
|
38 |
-
Notes:
|
39 |
-
- The function assumes that 'pandas', 'numpy', and 'plotly.graph_objects' are imported as 'pd', 'np', and 'go' respectively.
|
40 |
-
- The function also utilizes 'plotly.subplots.make_subplots' for creating subplots.
|
41 |
-
- The risk-free rate is assumed to be 1% per annum for Sharpe Ratio calculation.
|
42 |
-
"""
|
43 |
-
|
44 |
-
# Starting DataFrame and Series
|
45 |
-
individual_cumsum = pd.DataFrame()
|
46 |
-
individual_vol = pd.Series(dtype=float)
|
47 |
-
individual_sharpe = pd.Series(dtype=float)
|
48 |
-
|
49 |
-
|
50 |
-
# Iterating through tickers and weights in the tickers_weights dictionary
|
51 |
-
for ticker, weight in tickers_weights.items():
|
52 |
-
if ticker in df.columns: # Confirming that the tickers are available
|
53 |
-
individual_returns = df[ticker].pct_change() # Computing individual daily returns for each ticker
|
54 |
-
individual_cumsum[ticker] = ((1 + individual_returns).cumprod() - 1) * 100 # Computing cumulative returns over the period for each ticker
|
55 |
-
vol = (individual_returns.std() * np.sqrt(252)) * 100 # Computing annualized volatility
|
56 |
-
individual_vol[ticker] = vol # Adding annualized volatility for each ticker
|
57 |
-
individual_excess_returns = individual_returns - 0.01 / 252 # Computing the excess returns
|
58 |
-
sharpe = (individual_excess_returns.mean() / individual_returns.std() * np.sqrt(252)).round(2) # Computing Sharpe Ratio
|
59 |
-
individual_sharpe[ticker] = sharpe # Adding Sharpe Ratio for each ticker
|
60 |
-
|
61 |
-
# Creating subplots for comparison across securities
|
62 |
-
fig1 = make_subplots(rows = 1, cols = 2, horizontal_spacing=0.2,
|
63 |
-
column_titles=['Historical Performance Assets', 'Risk-Reward'],
|
64 |
-
column_widths=[.55, .45],
|
65 |
-
shared_xaxes=False, shared_yaxes=False)
|
66 |
-
|
67 |
-
# Adding the historical returns for each ticker on the first subplot
|
68 |
-
for ticker in individual_cumsum.columns:
|
69 |
-
fig1.add_trace(go.Scatter(x=individual_cumsum.index,
|
70 |
-
y=individual_cumsum[ticker],
|
71 |
-
mode = 'lines',
|
72 |
-
name = ticker,
|
73 |
-
hovertemplate = '%{y:.2f}%',
|
74 |
-
showlegend=False),
|
75 |
-
row=1, col=1)
|
76 |
-
|
77 |
-
# Defining colors for markers on the second subplot
|
78 |
-
sharpe_colors = [individual_sharpe[ticker] for ticker in individual_cumsum.columns]
|
79 |
-
|
80 |
-
# Adding markers for each ticker on the second subplot
|
81 |
-
fig1.add_trace(go.Scatter(x=individual_vol.tolist(),
|
82 |
-
y=individual_cumsum.iloc[-1].tolist(),
|
83 |
-
mode='markers+text',
|
84 |
-
marker=dict(size=75, color = sharpe_colors,
|
85 |
-
colorscale = 'Bluered_r',
|
86 |
-
colorbar=dict(title='Sharpe Ratio'),
|
87 |
-
showscale=True),
|
88 |
-
name = 'Returns',
|
89 |
-
text = individual_cumsum.columns.tolist(),
|
90 |
-
textfont=dict(color='white'),
|
91 |
-
showlegend=False,
|
92 |
-
hovertemplate = '%{y:.2f}%<br>Annualized Volatility: %{x:.2f}%<br>Sharpe Ratio: %{marker.color:.2f}',
|
93 |
-
textposition='middle center'),
|
94 |
-
row=1, col=2)
|
95 |
-
|
96 |
-
# Updating layout
|
97 |
-
fig1.update_layout(title={
|
98 |
-
'text': f'<b>Portfolio Analysis</b>',
|
99 |
-
'font': {'size': 24}
|
100 |
-
},
|
101 |
-
template = 'plotly_white',
|
102 |
-
height = 650, width = 1250,
|
103 |
-
hovermode = 'x unified')
|
104 |
-
|
105 |
-
fig1.update_yaxes(title_text='Returns (%)', col=1)
|
106 |
-
fig1.update_yaxes(title_text='Returns (%)', col = 2)
|
107 |
-
fig1.update_xaxes(title_text = 'Date', col = 1)
|
108 |
-
fig1.update_xaxes(title_text = 'Annualized Volatility (%)', col =2)
|
109 |
-
|
110 |
-
return fig1 # Returning figure
|
111 |
-
|
112 |
-
def portfolio_vs_benchmark(port_returns, benchmark_returns):
|
113 |
-
|
114 |
-
"""
|
115 |
-
This function calculates and displays the cumulative returns, annualized volatility, and Sharpe Ratios
|
116 |
-
for both the portfolio and the benchmark. It provides a side-by-side comparison to assess the portfolio's
|
117 |
-
performance relative to the benchmark.
|
118 |
-
|
119 |
-
Parameters:
|
120 |
-
- port_returns (pd.Series): A Pandas Series containing the daily returns of the portfolio.
|
121 |
-
- benchmark_returns (pd.Series): A Pandas Series containing the daily returns of the benchmark.
|
122 |
-
|
123 |
-
Returns:
|
124 |
-
- fig2: A Plotly Figure object with two subplots:
|
125 |
-
1. Line plot showing the cumulative returns of both the portfolio and the benchmark over time.
|
126 |
-
2. Scatter plot indicating the annualized volatility and the last cumulative return of both the portfolio
|
127 |
-
and the benchmark, colored by their respective Sharpe Ratios.
|
128 |
-
|
129 |
-
Notes:
|
130 |
-
- The function assumes that 'numpy' and 'plotly.graph_objects' are imported as 'np' and 'go' respectively.
|
131 |
-
- The function also utilizes 'plotly.subplots.make_subplots' for creating subplots.
|
132 |
-
- The risk-free rate is assumed to be 1% per annum for Sharpe Ratio calculation.
|
133 |
-
"""
|
134 |
-
|
135 |
-
# Computing the cumulative returns for the portfolio and the benchmark
|
136 |
-
portfolio_cumsum = (((1 + port_returns).cumprod() - 1) * 100).round(2)
|
137 |
-
benchmark_cumsum = (((1 + benchmark_returns).cumprod() - 1) * 100).round(2)
|
138 |
-
|
139 |
-
# Computing the annualized volatility for the portfolio and the benchmark
|
140 |
-
port_vol = ((port_returns.std() * np.sqrt(252)) * 100).round(2)
|
141 |
-
benchmark_vol = ((benchmark_returns.std() * np.sqrt(252)) * 100).round(2)
|
142 |
-
|
143 |
-
# Computing Sharpe Ratio for the portfolio and the benchmark
|
144 |
-
excess_port_returns = port_returns - 0.01 / 252
|
145 |
-
port_sharpe = (excess_port_returns.mean() / port_returns.std() * np.sqrt(252)).round(2)
|
146 |
-
exces_benchmark_returns = benchmark_returns - 0.01 / 252
|
147 |
-
benchmark_sharpe = (exces_benchmark_returns.mean() / benchmark_returns.std() * np.sqrt(252)).round(2)
|
148 |
-
|
149 |
-
# Creating a subplot to compare portfolio performance with the benchmark
|
150 |
-
fig2 = make_subplots(rows = 1, cols = 2, horizontal_spacing=0.2,
|
151 |
-
column_titles=['Cumulative Returns', 'Portfolio Risk-Reward'],
|
152 |
-
column_widths=[.55, .45],
|
153 |
-
shared_xaxes=False, shared_yaxes=False)
|
154 |
-
|
155 |
-
# Adding the cumulative returns for the portfolio
|
156 |
-
fig2.add_trace(go.Scatter(x=portfolio_cumsum.index,
|
157 |
-
y = portfolio_cumsum,
|
158 |
-
mode = 'lines', name = 'Portfolio', showlegend=False,
|
159 |
-
hovertemplate = '%{y:.2f}%'),
|
160 |
-
row=1,col=1)
|
161 |
-
|
162 |
-
# Adding the cumulative returns for the benchmark
|
163 |
-
fig2.add_trace(go.Scatter(x=benchmark_cumsum.index,
|
164 |
-
y = benchmark_cumsum,
|
165 |
-
mode = 'lines', name = 'Benchmark', showlegend=False,
|
166 |
-
hovertemplate = '%{y:.2f}%'),
|
167 |
-
row=1,col=1)
|
168 |
-
|
169 |
-
|
170 |
-
# Creating risk-reward plot for the benchmark and the portfolio
|
171 |
-
fig2.add_trace(go.Scatter(x = [port_vol, benchmark_vol], y = [portfolio_cumsum.iloc[-1], benchmark_cumsum.iloc[-1]],
|
172 |
-
mode = 'markers+text',
|
173 |
-
marker=dict(size = 75,
|
174 |
-
color = [port_sharpe, benchmark_sharpe],
|
175 |
-
colorscale='Bluered_r',
|
176 |
-
colorbar=dict(title='Sharpe Ratio'),
|
177 |
-
showscale=True),
|
178 |
-
name = 'Returns',
|
179 |
-
text=['Portfolio', 'Benchmark'], textposition='middle center',
|
180 |
-
textfont=dict(color='white'),
|
181 |
-
hovertemplate = '%{y:.2f}%<br>Annualized Volatility: %{x:.2f}%<br>Sharpe Ratio: %{marker.color:.2f}',
|
182 |
-
showlegend=False),
|
183 |
-
row = 1, col = 2)
|
184 |
-
|
185 |
-
|
186 |
-
# Configuring layout
|
187 |
-
fig2.update_layout(title={
|
188 |
-
'text': f'<b>Portfolio vs Benchmark</b>',
|
189 |
-
'font': {'size': 24}
|
190 |
-
},
|
191 |
-
template = 'plotly_white',
|
192 |
-
height = 650, width = 1250,
|
193 |
-
hovermode = 'x unified')
|
194 |
-
|
195 |
-
fig2.update_yaxes(title_text='Cumulative Returns (%)', col=1)
|
196 |
-
fig2.update_yaxes(title_text='Cumulative Returns (%)', col = 2)
|
197 |
-
fig2.update_xaxes(title_text = 'Date', col = 1)
|
198 |
-
fig2.update_xaxes(title_text = 'Annualized Volatility (%)', col =2)
|
199 |
-
|
200 |
-
return fig2 # Returning subplots
|
201 |
-
|
202 |
-
|
203 |
-
def portfolio_returns(tickers_and_values, start_date, end_date, benchmark):
|
204 |
-
|
205 |
-
"""
|
206 |
-
This function downloads historical stock data, calculates the weighted returns to build a portfolio,
|
207 |
-
and compares these returns to a benchmark.
|
208 |
-
It also displays the portfolio allocation and the performance of the portfolio against the benchmark.
|
209 |
-
|
210 |
-
Parameters:
|
211 |
-
- tickers_and_values (dict): A dictionary where keys are ticker symbols (str) and values are the current
|
212 |
-
amounts (float) invested in each ticker.
|
213 |
-
- start_date (str): The start date for the historical data in the format 'YYYY-MM-DD'.
|
214 |
-
- end_date (str): The end date for the historical data in the format 'YYYY-MM-DD'.
|
215 |
-
- benchmark (str): The ticker symbol for the benchmark against which to compare the portfolio's performance.
|
216 |
-
|
217 |
-
Returns:
|
218 |
-
- Displays three plots:
|
219 |
-
1. A pie chart showing the portfolio allocation by ticker.
|
220 |
-
2. A plot to analyze historical returns and volatility of each security
|
221 |
-
in the portfolio. (Not plotted if portfolio only has one security)
|
222 |
-
2. A comparison between portfolio returns and volatility against the benchmark over the specified period.
|
223 |
-
|
224 |
-
Notes:
|
225 |
-
- The function assumes that 'yfinance', 'pandas', 'plotly.graph_objects', and 'plotly.express' are imported
|
226 |
-
as 'yf', 'pd', 'go', and 'px' respectively.
|
227 |
-
- For single security portfolios, the function calculates returns without weighting.
|
228 |
-
- The function utilizes a helper function 'portfolio_vs_benchmark' for comparing portfolio returns with
|
229 |
-
the benchmark, which needs to be defined separately.
|
230 |
-
- Another helper function 'perform_portfolio_analysis' is called for portfolios with more than one security,
|
231 |
-
which also needs to be defined separately.
|
232 |
-
"""
|
233 |
-
|
234 |
-
# Obtaining tickers data with yfinance
|
235 |
-
df = yf.download(tickers=list(tickers_and_values.keys()),
|
236 |
-
start=start_date, end=end_date)
|
237 |
-
|
238 |
-
# Checking if there is data available in the given date range
|
239 |
-
if isinstance(df.columns, pd.MultiIndex):
|
240 |
-
missing_data_tickers = []
|
241 |
-
for ticker in tickers_and_values.keys():
|
242 |
-
first_valid_index = df['Adj Close'][ticker].first_valid_index()
|
243 |
-
if first_valid_index is None or first_valid_index.strftime('%Y-%m-%d') > start_date:
|
244 |
-
missing_data_tickers.append(ticker)
|
245 |
-
|
246 |
-
if missing_data_tickers:
|
247 |
-
error_message = f"No data available for the following tickers starting from {start_date}: {', '.join(missing_data_tickers)}"
|
248 |
-
return "error", error_message
|
249 |
-
else:
|
250 |
-
# For a single ticker, simply check the first valid index
|
251 |
-
first_valid_index = df['Adj Close'].first_valid_index()
|
252 |
-
if first_valid_index is None or first_valid_index.strftime('%Y-%m-%d') > start_date:
|
253 |
-
error_message = f"No data available for the ticker starting from {start_date}"
|
254 |
-
return "error", error_message
|
255 |
-
|
256 |
-
# Calculating portfolio value
|
257 |
-
total_portfolio_value = sum(tickers_and_values.values())
|
258 |
-
|
259 |
-
# Calculating the weights for each security in the portfolio
|
260 |
-
tickers_weights = {ticker: value / total_portfolio_value for ticker, value in tickers_and_values.items()}
|
261 |
-
|
262 |
-
# Checking if dataframe has MultiIndex columns
|
263 |
-
if isinstance(df.columns, pd.MultiIndex):
|
264 |
-
df = df['Adj Close'].fillna(df['Close']) # If 'Adjusted Close' is not available, use 'Close'
|
265 |
-
|
266 |
-
# Checking if there are more than just one security in the portfolio
|
267 |
-
if len(tickers_weights) > 1:
|
268 |
-
weights = list(tickers_weights.values()) # Obtaining weights
|
269 |
-
weighted_returns = df.pct_change().mul(weights, axis = 1) # Computed weighted returns
|
270 |
-
port_returns = weighted_returns.sum(axis=1) # Sum weighted returns to build portfolio returns
|
271 |
-
# If there is only one security in the portfolio...
|
272 |
-
else:
|
273 |
-
df = df['Adj Close'].fillna(df['Close']) # Obtaining 'Adjusted Close'. If not available, use 'Close'
|
274 |
-
port_returns = df.pct_change() # Computing returns without weights
|
275 |
-
|
276 |
-
# Obtaining benchmark data with yfinance
|
277 |
-
benchmark_df = yf.download(benchmark,
|
278 |
-
start=start_date, end=end_date)
|
279 |
-
# Obtaining 'Adjusted Close'. If not available, use 'Close'.
|
280 |
-
benchmark_df = benchmark_df['Adj Close'].fillna(benchmark_df['Close'])
|
281 |
-
|
282 |
-
# Computing benchmark returns
|
283 |
-
benchmark_returns = benchmark_df.pct_change()
|
284 |
-
|
285 |
-
|
286 |
-
# Plotting a pie plot
|
287 |
-
fig = go.Figure(data=[go.Pie(
|
288 |
-
labels=list(tickers_weights.keys()), # Obtaining tickers
|
289 |
-
values=list(tickers_weights.values()), # Obtaining weights
|
290 |
-
hoverinfo='label+percent',
|
291 |
-
textinfo='label+percent',
|
292 |
-
hole=.65,
|
293 |
-
marker=dict(colors=px.colors.qualitative.G10)
|
294 |
-
)])
|
295 |
-
|
296 |
-
# Defining layout
|
297 |
-
fig.update_layout(title={
|
298 |
-
'text': '<b>Portfolio Allocation</b>',
|
299 |
-
'font': {'size': 24}
|
300 |
-
}, height=550, width=1250)
|
301 |
-
|
302 |
-
# Running function to compare portfolio and benchmark
|
303 |
-
fig2 = portfolio_vs_benchmark(port_returns, benchmark_returns)
|
304 |
-
|
305 |
-
#fig.show() # Displaying Portfolio Allocation plot
|
306 |
-
|
307 |
-
# If we have more than one security in the portfolio,
|
308 |
-
# we run function to evaluate each security individually
|
309 |
-
fig1 = None
|
310 |
-
if len(tickers_weights) > 1:
|
311 |
-
fig1 = perform_portfolio_analysis(df, tickers_weights)
|
312 |
-
#fig1.show()
|
313 |
-
# Displaying Portfolio vs Benchmark plot
|
314 |
-
#fig2.show()
|
315 |
-
return "success", (fig, fig1, fig2)
|
316 |
|
317 |
# Defining page settings
|
318 |
st.set_page_config(
|
319 |
-
page_title
|
320 |
page_icon=":heavy_dollar_sign:",
|
321 |
layout='wide',
|
322 |
initial_sidebar_state='expanded'
|
323 |
)
|
324 |
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
def add_input_pair():
|
329 |
-
st.session_state['num_pairs'] += 1
|
330 |
-
|
331 |
-
title = '<h1 style="font-family:Didot; font-size: 64px; text-align:left">PortfolioPro</h1>'
|
332 |
-
st.markdown(title, unsafe_allow_html=True)
|
333 |
-
|
334 |
-
text = """<p style="font-size: 18px; text-align: left;"><br>Welcome to <b>PortfolioPro</b>, an intuitive app that streamlines your investment portfolio management. Effortlessly monitor your assets, benchmark against market standards, and discover valuable insights with just a few clicks.
|
335 |
-
|
336 |
-
Here's what you can do:
|
337 |
-
|
338 |
-
• Enter the ticker symbols exactly as they appear on Yahoo Finance and the total amount invested for each security in your portfolio.
|
339 |
-
|
340 |
-
• Set a benchmark to compare your portfolio's performance against market indices or other chosen standards.
|
341 |
-
|
342 |
-
• Select the start and end dates for the period you wish to analyze and gain historical insights. <br>Note: The app cannot analyze dates before a company's IPO or use non-business days as your *start* or *end* dates.
|
343 |
-
|
344 |
-
• Click "Run Analysis" to visualize historical returns, obtain volatility metrics, and unveil the allocation percentages of your portfolio.
|
345 |
-
|
346 |
-
Empower your investment strategy with cutting-edge financial APIs and visualization tools. <br>Start making informed decisions to elevate your financial future today.
|
347 |
-
<br><br>
|
348 |
-
Demo video: <a href="https://www.youtube.com/watch?v=7MuQ4G6tq_I">PortfolioPro - Demo</a>
|
349 |
-
<br><br>
|
350 |
-
Kaggle Notebook: <a href="https://www.kaggle.com/code/lusfernandotorres/building-an-investment-portfolio-management-app">Building an Investment Portfolio Management App 💰 - by @lusfernandotorres</a>
|
351 |
-
<br><br></p>"""
|
352 |
-
st.markdown(text, unsafe_allow_html=True)
|
353 |
-
|
354 |
-
|
355 |
-
tickers_and_values = {}
|
356 |
-
for n in range(st.session_state['num_pairs']):
|
357 |
-
col1, col2 = st.columns(2)
|
358 |
-
with col1:
|
359 |
-
ticker = st.text_input(f"Ticker {n+1}", key=f"ticker_{n+1}", placeholder="Enter the symbol for a security.")
|
360 |
-
with col2:
|
361 |
-
value = st.number_input(f"Value Invested in Ticker {n+1} ($)", min_value = 0.0, format="%.2f", key=f"value_{n+1}")
|
362 |
-
tickers_and_values[ticker] = value
|
363 |
-
|
364 |
-
st.button("Add Another Ticker", on_click=add_input_pair)
|
365 |
-
|
366 |
-
benchmark = st.text_input("Benchmark", placeholder="Enter the symbol for a benchmark.")
|
367 |
-
|
368 |
-
col1, col2 = st.columns(2)
|
369 |
-
with col1:
|
370 |
-
start_date = st.date_input(
|
371 |
-
"Start Date", value=date.today().replace(year=date.today().year-1),
|
372 |
-
min_value=date(1900, 1, 1)
|
373 |
-
)
|
374 |
-
with col2:
|
375 |
-
end_date = st.date_input(
|
376 |
-
"End Date", value=date.today(),
|
377 |
-
min_value=date(1900,1,1)
|
378 |
-
)
|
379 |
-
|
380 |
-
if st.button("Run Analysis"):
|
381 |
-
tickers_and_values = {k: v for k,v in tickers_and_values.items() if k and v > 0}
|
382 |
-
|
383 |
-
if not benchmark:
|
384 |
-
st.error("Please enter a benchmark ticker before running the analysis.")
|
385 |
-
elif not tickers_and_values:
|
386 |
-
st.error("Please add at least one ticker with a non-zero investment value before running the analysis.")
|
387 |
-
else:
|
388 |
-
start_date_str=start_date.strftime('%Y-%m-%d')
|
389 |
-
end_date_str=end_date.strftime('%Y-%m-%d')
|
390 |
-
|
391 |
-
status, result = portfolio_returns(tickers_and_values, start_date_str, end_date_str, benchmark)
|
392 |
-
|
393 |
-
if status == "error":
|
394 |
-
st.error(result)
|
395 |
-
else:
|
396 |
-
fig, fig1, fig2 = result
|
397 |
-
|
398 |
-
if fig is not None:
|
399 |
-
st.plotly_chart(fig)
|
400 |
-
if fig1 is not None:
|
401 |
-
st.plotly_chart(fig1)
|
402 |
-
if fig2 is not None:
|
403 |
-
st.plotly_chart(fig2)
|
404 |
-
|
405 |
-
signature_html = """
|
406 |
-
<hr style="border: 0; height: 1px; border-top: 0.85px solid #b2b2b2">
|
407 |
-
<div style="text-align: left; color: #8d8d8d; padding-left: 15px; font-size: 14.25px;">
|
408 |
-
Luis Fernando Torres, 2024<br><br>
|
409 |
-
Let's connect!🔗<br>
|
410 |
-
<a href="https://www.linkedin.com/in/luuisotorres/" target="_blank">LinkedIn</a> • <a href="https://medium.com/@luuisotorres" target="_blank">Medium</a> • <a href="https://www.kaggle.com/lusfernandotorres" target="_blank">Kaggle</a><br><br>
|
411 |
-
</div>
|
412 |
-
<div style="text-align: center; margin-top: 50px; color: #8d8d8d; padding-left: 15px; font-size: 14.25px;">
|
413 |
-
<b>Like my content? Feel free to <a href="https://www.buymeacoffee.com/luuisotorres" target="_blank">Buy Me a Coffee ☕</a></b>
|
414 |
-
</div>
|
415 |
-
<div style="text-align: center; margin-top: 80px; color: #8d8d8d; padding-left: 15px; font-size: 14.25px;">
|
416 |
-
<b><a href="https://luuisotorres.github.io/" target="_blank">https://luuisotorres.github.io/</a></b>
|
417 |
-
</div>
|
418 |
-
"""
|
419 |
-
|
420 |
-
st.markdown(signature_html, unsafe_allow_html=True)
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from ui import build_ui
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
# Defining page settings
|
5 |
st.set_page_config(
|
6 |
+
page_title="Investment Portfolio Management",
|
7 |
page_icon=":heavy_dollar_sign:",
|
8 |
layout='wide',
|
9 |
initial_sidebar_state='expanded'
|
10 |
)
|
11 |
|
12 |
+
# Build the UI
|
13 |
+
build_ui()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
functions.py
ADDED
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Importing necessary libraries
|
2 |
+
import streamlit as st
|
3 |
+
from datetime import date
|
4 |
+
import yfinance as yf
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import plotly.express as px
|
8 |
+
import plotly.graph_objs as go
|
9 |
+
import plotly.subplots as sp
|
10 |
+
from plotly.subplots import make_subplots
|
11 |
+
import plotly.figure_factory as ff
|
12 |
+
import plotly.io as pio
|
13 |
+
from IPython.display import display
|
14 |
+
from plotly.offline import init_notebook_mode
|
15 |
+
init_notebook_mode(connected=True)
|
16 |
+
|
17 |
+
# Hiding Warnings
|
18 |
+
import warnings
|
19 |
+
warnings.filterwarnings('ignore')
|
20 |
+
def perform_portfolio_analysis(df, tickers_weights):
|
21 |
+
"""
|
22 |
+
This function takes historical stock data and the weights of the securities in the portfolio,
|
23 |
+
It calculates individual security returns, cumulative returns, volatility, and Sharpe Ratios.
|
24 |
+
It then visualizes this data, showing historical performance and a risk-reward plot.
|
25 |
+
|
26 |
+
Parameters:
|
27 |
+
- df (pd.DataFrame): DataFrame containing historical stock data with securities as columns.
|
28 |
+
- tickers_weights (dict): A dictionary where keys are ticker symbols (str) and values are their
|
29 |
+
respective weights (float)in the portfolio.
|
30 |
+
|
31 |
+
Returns:
|
32 |
+
- fig1: A Plotly Figure with two subplots:
|
33 |
+
1. Line plot showing the historical returns of each security in the portfolio.
|
34 |
+
2. Plot showing the annualized volatility and last cumulative return of each security
|
35 |
+
colored by their respective Sharpe Ratio.
|
36 |
+
|
37 |
+
Notes:
|
38 |
+
- The function assumes that 'pandas', 'numpy', and 'plotly.graph_objects' are imported as 'pd', 'np', and 'go' respectively.
|
39 |
+
- The function also utilizes 'plotly.subplots.make_subplots' for creating subplots.
|
40 |
+
- The risk-free rate is assumed to be 1% per annum for Sharpe Ratio calculation.
|
41 |
+
"""
|
42 |
+
|
43 |
+
# Starting DataFrame and Series
|
44 |
+
individual_cumsum = pd.DataFrame()
|
45 |
+
individual_vol = pd.Series(dtype=float)
|
46 |
+
individual_sharpe = pd.Series(dtype=float)
|
47 |
+
|
48 |
+
|
49 |
+
# Iterating through tickers and weights in the tickers_weights dictionary
|
50 |
+
for ticker, weight in tickers_weights.items():
|
51 |
+
if ticker in df.columns: # Confirming that the tickers are available
|
52 |
+
individual_returns = df[ticker].pct_change() # Computing individual daily returns for each ticker
|
53 |
+
individual_cumsum[ticker] = ((1 + individual_returns).cumprod() - 1) * 100 # Computing cumulative returns over the period for each ticker
|
54 |
+
vol = (individual_returns.std() * np.sqrt(252)) * 100 # Computing annualized volatility
|
55 |
+
individual_vol[ticker] = vol # Adding annualized volatility for each ticker
|
56 |
+
individual_excess_returns = individual_returns - 0.01 / 252 # Computing the excess returns
|
57 |
+
sharpe = (individual_excess_returns.mean() / individual_returns.std() * np.sqrt(252)).round(2) # Computing Sharpe Ratio
|
58 |
+
individual_sharpe[ticker] = sharpe # Adding Sharpe Ratio for each ticker
|
59 |
+
|
60 |
+
# Creating subplots for comparison across securities
|
61 |
+
fig1 = make_subplots(rows = 1, cols = 2, horizontal_spacing=0.2,
|
62 |
+
column_titles=['Historical Performance Assets', 'Risk-Reward'],
|
63 |
+
column_widths=[.55, .45],
|
64 |
+
shared_xaxes=False, shared_yaxes=False)
|
65 |
+
|
66 |
+
# Adding the historical returns for each ticker on the first subplot
|
67 |
+
for ticker in individual_cumsum.columns:
|
68 |
+
fig1.add_trace(go.Scatter(x=individual_cumsum.index,
|
69 |
+
y=individual_cumsum[ticker],
|
70 |
+
mode = 'lines',
|
71 |
+
name = ticker,
|
72 |
+
hovertemplate = '%{y:.2f}%',
|
73 |
+
showlegend=False),
|
74 |
+
row=1, col=1)
|
75 |
+
|
76 |
+
# Defining colors for markers on the second subplot
|
77 |
+
sharpe_colors = [individual_sharpe[ticker] for ticker in individual_cumsum.columns]
|
78 |
+
|
79 |
+
# Adding markers for each ticker on the second subplot
|
80 |
+
fig1.add_trace(go.Scatter(x=individual_vol.tolist(),
|
81 |
+
y=individual_cumsum.iloc[-1].tolist(),
|
82 |
+
mode='markers+text',
|
83 |
+
marker=dict(size=75, color = sharpe_colors,
|
84 |
+
colorscale = 'Bluered_r',
|
85 |
+
colorbar=dict(title='Sharpe Ratio'),
|
86 |
+
showscale=True),
|
87 |
+
name = 'Returns',
|
88 |
+
text = individual_cumsum.columns.tolist(),
|
89 |
+
textfont=dict(color='white'),
|
90 |
+
showlegend=False,
|
91 |
+
hovertemplate = '%{y:.2f}%<br>Annualized Volatility: %{x:.2f}%<br>Sharpe Ratio: %{marker.color:.2f}',
|
92 |
+
textposition='middle center'),
|
93 |
+
row=1, col=2)
|
94 |
+
|
95 |
+
# Updating layout
|
96 |
+
fig1.update_layout(title={
|
97 |
+
'text': f'<b>Portfolio Analysis</b>',
|
98 |
+
'font': {'size': 24}
|
99 |
+
},
|
100 |
+
template = 'plotly_white',
|
101 |
+
height = 650, width = 1250,
|
102 |
+
hovermode = 'x unified')
|
103 |
+
|
104 |
+
fig1.update_yaxes(title_text='Returns (%)', col=1)
|
105 |
+
fig1.update_yaxes(title_text='Returns (%)', col = 2)
|
106 |
+
fig1.update_xaxes(title_text = 'Date', col = 1)
|
107 |
+
fig1.update_xaxes(title_text = 'Annualized Volatility (%)', col =2)
|
108 |
+
|
109 |
+
return fig1 # Returning figure
|
110 |
+
|
111 |
+
|
112 |
+
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
113 |
+
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
114 |
+
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
115 |
+
|
116 |
+
|
117 |
+
def portfolio_vs_benchmark(port_returns, benchmark_returns):
|
118 |
+
|
119 |
+
"""
|
120 |
+
This function calculates and displays the cumulative returns, annualized volatility, and Sharpe Ratios
|
121 |
+
for both the portfolio and the benchmark. It provides a side-by-side comparison to assess the portfolio's
|
122 |
+
performance relative to the benchmark.
|
123 |
+
|
124 |
+
Parameters:
|
125 |
+
- port_returns (pd.Series): A Pandas Series containing the daily returns of the portfolio.
|
126 |
+
- benchmark_returns (pd.Series): A Pandas Series containing the daily returns of the benchmark.
|
127 |
+
|
128 |
+
Returns:
|
129 |
+
- fig2: A Plotly Figure object with two subplots:
|
130 |
+
1. Line plot showing the cumulative returns of both the portfolio and the benchmark over time.
|
131 |
+
2. Scatter plot indicating the annualized volatility and the last cumulative return of both the portfolio
|
132 |
+
and the benchmark, colored by their respective Sharpe Ratios.
|
133 |
+
|
134 |
+
Notes:
|
135 |
+
- The function assumes that 'numpy' and 'plotly.graph_objects' are imported as 'np' and 'go' respectively.
|
136 |
+
- The function also utilizes 'plotly.subplots.make_subplots' for creating subplots.
|
137 |
+
- The risk-free rate is assumed to be 1% per annum for Sharpe Ratio calculation.
|
138 |
+
"""
|
139 |
+
|
140 |
+
# Computing the cumulative returns for the portfolio and the benchmark
|
141 |
+
portfolio_cumsum = (((1 + port_returns).cumprod() - 1) * 100).round(2)
|
142 |
+
benchmark_cumsum = (((1 + benchmark_returns).cumprod() - 1) * 100).round(2)
|
143 |
+
|
144 |
+
# Computing the annualized volatility for the portfolio and the benchmark
|
145 |
+
port_vol = ((port_returns.std() * np.sqrt(252)) * 100).round(2)
|
146 |
+
benchmark_vol = ((benchmark_returns.std() * np.sqrt(252)) * 100).round(2)
|
147 |
+
|
148 |
+
# Computing Sharpe Ratio for the portfolio and the benchmark
|
149 |
+
excess_port_returns = port_returns - 0.01 / 252
|
150 |
+
port_sharpe = (excess_port_returns.mean() / port_returns.std() * np.sqrt(252)).round(2)
|
151 |
+
exces_benchmark_returns = benchmark_returns - 0.01 / 252
|
152 |
+
benchmark_sharpe = (exces_benchmark_returns.mean() / benchmark_returns.std() * np.sqrt(252)).round(2)
|
153 |
+
|
154 |
+
# Creating a subplot to compare portfolio performance with the benchmark
|
155 |
+
fig2 = make_subplots(rows = 1, cols = 2, horizontal_spacing=0.2,
|
156 |
+
column_titles=['Cumulative Returns', 'Portfolio Risk-Reward'],
|
157 |
+
column_widths=[.55, .45],
|
158 |
+
shared_xaxes=False, shared_yaxes=False)
|
159 |
+
|
160 |
+
# Adding the cumulative returns for the portfolio
|
161 |
+
fig2.add_trace(go.Scatter(x=portfolio_cumsum.index,
|
162 |
+
y = portfolio_cumsum,
|
163 |
+
mode = 'lines', name = 'Portfolio', showlegend=False,
|
164 |
+
hovertemplate = '%{y:.2f}%'),
|
165 |
+
row=1,col=1)
|
166 |
+
|
167 |
+
# Adding the cumulative returns for the benchmark
|
168 |
+
fig2.add_trace(go.Scatter(x=benchmark_cumsum.index,
|
169 |
+
y = benchmark_cumsum,
|
170 |
+
mode = 'lines', name = 'Benchmark', showlegend=False,
|
171 |
+
hovertemplate = '%{y:.2f}%'),
|
172 |
+
row=1,col=1)
|
173 |
+
|
174 |
+
|
175 |
+
# Creating risk-reward plot for the benchmark and the portfolio
|
176 |
+
fig2.add_trace(go.Scatter(x = [port_vol, benchmark_vol], y = [portfolio_cumsum.iloc[-1], benchmark_cumsum.iloc[-1]],
|
177 |
+
mode = 'markers+text',
|
178 |
+
marker=dict(size = 75,
|
179 |
+
color = [port_sharpe, benchmark_sharpe],
|
180 |
+
colorscale='Bluered_r',
|
181 |
+
colorbar=dict(title='Sharpe Ratio'),
|
182 |
+
showscale=True),
|
183 |
+
name = 'Returns',
|
184 |
+
text=['Portfolio', 'Benchmark'], textposition='middle center',
|
185 |
+
textfont=dict(color='white'),
|
186 |
+
hovertemplate = '%{y:.2f}%<br>Annualized Volatility: %{x:.2f}%<br>Sharpe Ratio: %{marker.color:.2f}',
|
187 |
+
showlegend=False),
|
188 |
+
row = 1, col = 2)
|
189 |
+
|
190 |
+
|
191 |
+
# Configuring layout
|
192 |
+
fig2.update_layout(title={
|
193 |
+
'text': f'<b>Portfolio vs Benchmark</b>',
|
194 |
+
'font': {'size': 24}
|
195 |
+
},
|
196 |
+
template = 'plotly_white',
|
197 |
+
height = 650, width = 1250,
|
198 |
+
hovermode = 'x unified')
|
199 |
+
|
200 |
+
fig2.update_yaxes(title_text='Cumulative Returns (%)', col=1)
|
201 |
+
fig2.update_yaxes(title_text='Cumulative Returns (%)', col = 2)
|
202 |
+
fig2.update_xaxes(title_text = 'Date', col = 1)
|
203 |
+
fig2.update_xaxes(title_text = 'Annualized Volatility (%)', col =2)
|
204 |
+
|
205 |
+
return fig2 # Returning subplots
|
206 |
+
|
207 |
+
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
208 |
+
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
209 |
+
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
210 |
+
|
211 |
+
|
212 |
+
def portfolio_returns(tickers_and_values, start_date, end_date, benchmark):
|
213 |
+
|
214 |
+
"""
|
215 |
+
This function downloads historical stock data, calculates the weighted returns to build a portfolio,
|
216 |
+
and compares these returns to a benchmark.
|
217 |
+
It also displays the portfolio allocation and the performance of the portfolio against the benchmark.
|
218 |
+
|
219 |
+
Parameters:
|
220 |
+
- tickers_and_values (dict): A dictionary where keys are ticker symbols (str) and values are the current
|
221 |
+
amounts (float) invested in each ticker.
|
222 |
+
- start_date (str): The start date for the historical data in the format 'YYYY-MM-DD'.
|
223 |
+
- end_date (str): The end date for the historical data in the format 'YYYY-MM-DD'.
|
224 |
+
- benchmark (str): The ticker symbol for the benchmark against which to compare the portfolio's performance.
|
225 |
+
|
226 |
+
Returns:
|
227 |
+
- Displays three plots:
|
228 |
+
1. A pie chart showing the portfolio allocation by ticker.
|
229 |
+
2. A plot to analyze historical returns and volatility of each security
|
230 |
+
in the portfolio. (Not plotted if portfolio only has one security)
|
231 |
+
2. A comparison between portfolio returns and volatility against the benchmark over the specified period.
|
232 |
+
|
233 |
+
Notes:
|
234 |
+
- The function assumes that 'yfinance', 'pandas', 'plotly.graph_objects', and 'plotly.express' are imported
|
235 |
+
as 'yf', 'pd', 'go', and 'px' respectively.
|
236 |
+
- For single security portfolios, the function calculates returns without weighting.
|
237 |
+
- The function utilizes a helper function 'portfolio_vs_benchmark' for comparing portfolio returns with
|
238 |
+
the benchmark, which needs to be defined separately.
|
239 |
+
- Another helper function 'perform_portfolio_analysis' is called for portfolios with more than one security,
|
240 |
+
which also needs to be defined separately.
|
241 |
+
"""
|
242 |
+
|
243 |
+
# Obtaining tickers data with yfinance
|
244 |
+
df = yf.download(tickers=list(tickers_and_values.keys()),
|
245 |
+
start=start_date, end=end_date)
|
246 |
+
|
247 |
+
# Checking if there is data available in the given date range
|
248 |
+
if isinstance(df.columns, pd.MultiIndex):
|
249 |
+
missing_data_tickers = []
|
250 |
+
for ticker in tickers_and_values.keys():
|
251 |
+
first_valid_index = df['Adj Close'][ticker].first_valid_index()
|
252 |
+
if first_valid_index is None or first_valid_index.strftime('%Y-%m-%d') > start_date:
|
253 |
+
missing_data_tickers.append(ticker)
|
254 |
+
|
255 |
+
if missing_data_tickers:
|
256 |
+
error_message = f"No data available for the following tickers starting from {start_date}: {', '.join(missing_data_tickers)}"
|
257 |
+
return "error", error_message
|
258 |
+
else:
|
259 |
+
# For a single ticker, simply check the first valid index
|
260 |
+
first_valid_index = df['Adj Close'].first_valid_index()
|
261 |
+
if first_valid_index is None or first_valid_index.strftime('%Y-%m-%d') > start_date:
|
262 |
+
error_message = f"No data available for the ticker starting from {start_date}"
|
263 |
+
return "error", error_message
|
264 |
+
|
265 |
+
# Calculating portfolio value
|
266 |
+
total_portfolio_value = sum(tickers_and_values.values())
|
267 |
+
|
268 |
+
# Calculating the weights for each security in the portfolio
|
269 |
+
tickers_weights = {ticker: value / total_portfolio_value for ticker, value in tickers_and_values.items()}
|
270 |
+
|
271 |
+
# Checking if dataframe has MultiIndex columns
|
272 |
+
if isinstance(df.columns, pd.MultiIndex):
|
273 |
+
df = df['Adj Close'].fillna(df['Close']) # If 'Adjusted Close' is not available, use 'Close'
|
274 |
+
|
275 |
+
# Checking if there are more than just one security in the portfolio
|
276 |
+
if len(tickers_weights) > 1:
|
277 |
+
weights = list(tickers_weights.values()) # Obtaining weights
|
278 |
+
weighted_returns = df.pct_change().mul(weights, axis = 1) # Computed weighted returns
|
279 |
+
port_returns = weighted_returns.sum(axis=1) # Sum weighted returns to build portfolio returns
|
280 |
+
# If there is only one security in the portfolio...
|
281 |
+
else:
|
282 |
+
df = df['Adj Close'].fillna(df['Close']) # Obtaining 'Adjusted Close'. If not available, use 'Close'
|
283 |
+
port_returns = df.pct_change() # Computing returns without weights
|
284 |
+
|
285 |
+
# Obtaining benchmark data with yfinance
|
286 |
+
benchmark_df = yf.download(benchmark,
|
287 |
+
start=start_date, end=end_date)
|
288 |
+
# Obtaining 'Adjusted Close'. If not available, use 'Close'.
|
289 |
+
benchmark_df = benchmark_df['Adj Close'].fillna(benchmark_df['Close'])
|
290 |
+
|
291 |
+
# Computing benchmark returns
|
292 |
+
benchmark_returns = benchmark_df.pct_change()
|
293 |
+
|
294 |
+
|
295 |
+
# Plotting a pie plot
|
296 |
+
fig = go.Figure(data=[go.Pie(
|
297 |
+
labels=list(tickers_weights.keys()), # Obtaining tickers
|
298 |
+
values=list(tickers_weights.values()), # Obtaining weights
|
299 |
+
hoverinfo='label+percent',
|
300 |
+
textinfo='label+percent',
|
301 |
+
hole=.65,
|
302 |
+
marker=dict(colors=px.colors.qualitative.G10)
|
303 |
+
)])
|
304 |
+
|
305 |
+
# Defining layout
|
306 |
+
fig.update_layout(title={
|
307 |
+
'text': '<b>Portfolio Allocation</b>',
|
308 |
+
'font': {'size': 24}
|
309 |
+
}, height=550, width=1250)
|
310 |
+
|
311 |
+
# Running function to compare portfolio and benchmark
|
312 |
+
fig2 = portfolio_vs_benchmark(port_returns, benchmark_returns)
|
313 |
+
|
314 |
+
#fig.show() # Displaying Portfolio Allocation plot
|
315 |
+
|
316 |
+
# If we have more than one security in the portfolio,
|
317 |
+
# we run function to evaluate each security individually
|
318 |
+
fig1 = None
|
319 |
+
if len(tickers_weights) > 1:
|
320 |
+
fig1 = perform_portfolio_analysis(df, tickers_weights)
|
321 |
+
#fig1.show()
|
322 |
+
# Displaying Portfolio vs Benchmark plot
|
323 |
+
#fig2.show()
|
324 |
+
return "success", (fig, fig1, fig2)
|
ui.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from datetime import date
|
3 |
+
from functions import perform_portfolio_analysis, portfolio_vs_benchmark, portfolio_returns
|
4 |
+
|
5 |
+
def build_ui():
|
6 |
+
"""
|
7 |
+
This function builds the Streamlit UI for the portfolio management app.
|
8 |
+
"""
|
9 |
+
|
10 |
+
# Title and Introduction
|
11 |
+
title = '<h1 style="font-family:Didot; font-size: 64px; text-align:left">PortfolioPro</h1>'
|
12 |
+
st.markdown(title, unsafe_allow_html=True)
|
13 |
+
|
14 |
+
text = """
|
15 |
+
<p style="font-size: 18px; text-align: left;">
|
16 |
+
<br>Welcome to <b>PortfolioPro</b>, an intuitive app that streamlines your investment portfolio management.
|
17 |
+
Effortlessly monitor your assets, benchmark against market standards, and discover valuable insights with just a few clicks.
|
18 |
+
Here's what you can do:
|
19 |
+
<br>
|
20 |
+
• Enter the ticker symbols exactly as they appear on Yahoo Finance and the total amount invested for each security in your portfolio.
|
21 |
+
• Set a benchmark to compare your portfolio's performance against market indices or other chosen standards.
|
22 |
+
• Select the start and end dates for the period you wish to analyze and gain historical insights.
|
23 |
+
<br>
|
24 |
+
Note: The app cannot analyze dates before a company's IPO or use non-business days as your *start* or *end* dates.
|
25 |
+
<br>
|
26 |
+
• Click "Run Analysis" to visualize historical returns, obtain volatility metrics, and unveil the allocation percentages of your portfolio.
|
27 |
+
<br>
|
28 |
+
Empower your investment strategy with cutting-edge financial APIs and visualization tools.
|
29 |
+
<br>Start making informed decisions to elevate your financial future today.
|
30 |
+
<br><br>
|
31 |
+
Demo video: <a href="https://www.youtube.com/watch?v=7MuQ4G6tq_I">PortfolioPro - Demo</a>
|
32 |
+
<br><br>
|
33 |
+
Kaggle Notebook: <a href="https://www.kaggle.com/code/lusfernandotorres/building-an-investment-portfolio-management-app">Building an Investment Portfolio Management App 💰 - by @lusfernandotorres</a>
|
34 |
+
<br><br>
|
35 |
+
</p>
|
36 |
+
"""
|
37 |
+
st.markdown(text, unsafe_allow_html=True)
|
38 |
+
|
39 |
+
# Ticker and Value Input
|
40 |
+
if 'num_pairs' not in st.session_state:
|
41 |
+
st.session_state['num_pairs'] = 1
|
42 |
+
|
43 |
+
def add_input_pair():
|
44 |
+
st.session_state['num_pairs'] += 1
|
45 |
+
|
46 |
+
tickers_and_values = {}
|
47 |
+
for n in range(st.session_state['num_pairs']):
|
48 |
+
col1, col2 = st.columns(2)
|
49 |
+
with col1:
|
50 |
+
ticker = st.text_input(f"Ticker {n+1}", key=f"ticker_{n+1}", placeholder="Enter the symbol for a security.")
|
51 |
+
with col2:
|
52 |
+
value = st.number_input(f"Value Invested in Ticker {n+1} ($)", min_value=0.0, format="%.2f", key=f"value_{n+1}")
|
53 |
+
tickers_and_values[ticker] = value
|
54 |
+
|
55 |
+
st.button("Add Another Ticker", on_click=add_input_pair)
|
56 |
+
|
57 |
+
# Benchmark Input
|
58 |
+
benchmark = st.text_input("Benchmark", placeholder="Enter the symbol for a benchmark.")
|
59 |
+
|
60 |
+
# Date Input
|
61 |
+
col1, col2 = st.columns(2)
|
62 |
+
with col1:
|
63 |
+
start_date = st.date_input("Start Date", value=date.today().replace(year=date.today().year - 1), min_value=date(1900, 1, 1))
|
64 |
+
with col2:
|
65 |
+
end_date = st.date_input("End Date", value=date.today(), min_value=date(1900, 1, 1))
|
66 |
+
|
67 |
+
# Run Analysis Button
|
68 |
+
if st.button("Run Analysis"):
|
69 |
+
tickers_and_values = {k: v for k,v in tickers_and_values.items() if k and v > 0}
|
70 |
+
|
71 |
+
if not benchmark:
|
72 |
+
st.error("Please enter a benchmark ticker before running the analysis.")
|
73 |
+
elif not tickers_and_values:
|
74 |
+
st.error("Please add at least one ticker with a non-zero investment value before running the analysis.")
|
75 |
+
else:
|
76 |
+
start_date_str=start_date.strftime('%Y-%m-%d')
|
77 |
+
end_date_str=end_date.strftime('%Y-%m-%d')
|
78 |
+
|
79 |
+
status, result = portfolio_returns(tickers_and_values, start_date_str, end_date_str, benchmark)
|
80 |
+
|
81 |
+
if status == "error":
|
82 |
+
st.error(result)
|
83 |
+
else:
|
84 |
+
fig, fig1, fig2 = result
|
85 |
+
|
86 |
+
if fig is not None:
|
87 |
+
st.plotly_chart(fig)
|
88 |
+
if fig1 is not None:
|
89 |
+
st.plotly_chart(fig1)
|
90 |
+
if fig2 is not None:
|
91 |
+
st.plotly_chart(fig2)
|
92 |
+
|
93 |
+
# Signature
|
94 |
+
signature_html = """
|
95 |
+
<hr style="border: 0; height: 1px; border-top: 0.85px solid #b2b2b2">
|
96 |
+
<div style="text-align: left; color: #8d8d8d; padding-left: 15px; font-size: 14.25px;">
|
97 |
+
Luis Fernando Torres, 2024<br><br>
|
98 |
+
Let's connect!🔗<br>
|
99 |
+
<a href="https://www.linkedin.com/in/luuisotorres/" target="_blank">LinkedIn</a> •
|
100 |
+
<a href="https://medium.com/@luuisotorres" target="_blank">Medium</a> •
|
101 |
+
<a href="https://www.kaggle.com/lusfernandotorres" target="_blank">Kaggle</a><br><br>
|
102 |
+
</div>
|
103 |
+
<div style="text-align: center; margin-top: 50px; color: #8d8d8d; padding-left: 15px; font-size: 14.25px;">
|
104 |
+
<b>Like my content? Feel free to <a href="https://www.buymeacoffee.com/luuisotorres" target="_blank">Buy Me a Coffee ☕</a></b>
|
105 |
+
</div>
|
106 |
+
<div style="text-align: center; margin-top: 80px; color: #8d8d8d; padding-left: 15px; font-size: 14.25px;">
|
107 |
+
<b><a href="https://luuisotorres.github.io/" target="_blank">https://luuisotorres.github.io/</a></b>
|
108 |
+
</div>
|
109 |
+
"""
|
110 |
+
st.markdown(signature_html, unsafe_allow_html=True)
|