|
import gradio as gr |
|
from fastai.vision.all import * |
|
import torchvision.transforms as transforms |
|
import torch |
|
from PIL import Image |
|
import numpy as np |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model = torch.jit.load("unet.pth") |
|
model = model.to(device) |
|
model.eval() |
|
|
|
def transform_image(image): |
|
my_transforms = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) |
|
]) |
|
image = transforms.Resize((480,640))(Image.fromarray(image)) |
|
tensor = my_transforms(image).unsqueeze(0).to(device) |
|
|
|
with torch.no_grad(): |
|
outputs = model(tensor) |
|
outputs = torch.argmax(outputs, 1) |
|
|
|
mask = np.array(outputs.cpu()) |
|
mask[mask==0]=255 |
|
mask[mask==1]=150 |
|
mask[mask==2]=76 |
|
mask[mask==3]=25 |
|
mask[mask==4]=0 |
|
|
|
mask = np.reshape(mask, (480, 640)) |
|
return Image.fromarray(mask.astype('uint8')) |
|
|
|
|
|
interface = gr.Interface(fn=transform_image, |
|
inputs=gr.components.Image(width=640, height=480), |
|
outputs=gr.components.Image(), |
|
examples=['color_154.jpg', 'color_189.jpg']) |
|
interface.launch(share=False) |
|
|