Spaces:
Runtime error
Runtime error
import re | |
from functools import partial | |
import numpy as np | |
import torch | |
from modules import RoPE, shared | |
from modules.callbacks import Iteratorize | |
from modules.logging_colors import logger | |
from modules.text_generation import get_max_prompt_length | |
try: | |
import llama_cpp | |
except: | |
llama_cpp = None | |
try: | |
import llama_cpp_cuda | |
except: | |
llama_cpp_cuda = None | |
def llama_cpp_lib(): | |
if (shared.args.cpu and llama_cpp is not None) or llama_cpp_cuda is None: | |
return llama_cpp | |
else: | |
return llama_cpp_cuda | |
def ban_eos_logits_processor(eos_token, input_ids, logits): | |
logits[eos_token] = -float('inf') | |
return logits | |
def custom_token_ban_logits_processor(token_ids, input_ids, logits): | |
for token_id in token_ids: | |
logits[token_id] = -float('inf') | |
return logits | |
class LlamaCppModel: | |
def __init__(self): | |
self.initialized = False | |
self.grammar_string = '' | |
self.grammar = None | |
def __del__(self): | |
self.model.__del__() | |
def from_pretrained(self, path): | |
Llama = llama_cpp_lib().Llama | |
LlamaCache = llama_cpp_lib().LlamaCache | |
result = self() | |
cache_capacity = 0 | |
if shared.args.cache_capacity is not None: | |
if 'GiB' in shared.args.cache_capacity: | |
cache_capacity = int(re.sub('[a-zA-Z]', '', shared.args.cache_capacity)) * 1000 * 1000 * 1000 | |
elif 'MiB' in shared.args.cache_capacity: | |
cache_capacity = int(re.sub('[a-zA-Z]', '', shared.args.cache_capacity)) * 1000 * 1000 | |
else: | |
cache_capacity = int(shared.args.cache_capacity) | |
logger.info("Cache capacity is " + str(cache_capacity) + " bytes") | |
if shared.args.tensor_split is None or shared.args.tensor_split.strip() == '': | |
tensor_split_list = None | |
else: | |
tensor_split_list = [float(x) for x in shared.args.tensor_split.strip().split(",")] | |
params = { | |
'model_path': str(path), | |
'n_ctx': shared.args.n_ctx, | |
'seed': int(shared.args.llama_cpp_seed), | |
'n_threads': shared.args.threads or None, | |
'n_threads_batch': shared.args.threads_batch or None, | |
'n_batch': shared.args.n_batch, | |
'use_mmap': not shared.args.no_mmap, | |
'use_mlock': shared.args.mlock, | |
'mul_mat_q': not shared.args.no_mul_mat_q, | |
'numa': shared.args.numa, | |
'n_gpu_layers': shared.args.n_gpu_layers, | |
'rope_freq_base': RoPE.get_rope_freq_base(shared.args.alpha_value, shared.args.rope_freq_base), | |
'tensor_split': tensor_split_list, | |
'rope_freq_scale': 1.0 / shared.args.compress_pos_emb, | |
} | |
result.model = Llama(**params) | |
if cache_capacity > 0: | |
result.model.set_cache(LlamaCache(capacity_bytes=cache_capacity)) | |
# This is ugly, but the model and the tokenizer are the same object in this library. | |
return result, result | |
def encode(self, string): | |
if type(string) is str: | |
string = string.encode() | |
return self.model.tokenize(string) | |
def decode(self, ids): | |
return self.model.detokenize(ids).decode('utf-8') | |
def get_logits(self, tokens): | |
self.model.eval(tokens) | |
logits = self.model._scores | |
logits = np.expand_dims(logits, 0) # batch dim is expected | |
return torch.tensor(logits, dtype=torch.float32) | |
def load_grammar(self, string): | |
if string != self.grammar_string: | |
self.grammar_string = string | |
if string.strip() != '': | |
self.grammar = llama_cpp_lib().LlamaGrammar.from_string(string) | |
else: | |
self.grammar = None | |
def generate(self, prompt, state, callback=None): | |
LogitsProcessorList = llama_cpp_lib().LogitsProcessorList | |
prompt = prompt if type(prompt) is str else prompt.decode() | |
# Handle truncation | |
prompt = self.encode(prompt) | |
prompt = prompt[-get_max_prompt_length(state):] | |
prompt = self.decode(prompt) | |
self.load_grammar(state['grammar_string']) | |
logit_processors = LogitsProcessorList() | |
if state['ban_eos_token']: | |
logit_processors.append(partial(ban_eos_logits_processor, self.model.token_eos())) | |
if state['custom_token_bans']: | |
to_ban = [int(x) for x in state['custom_token_bans'].split(',')] | |
if len(to_ban) > 0: | |
logit_processors.append(partial(custom_token_ban_logits_processor, to_ban)) | |
completion_chunks = self.model.create_completion( | |
prompt=prompt, | |
max_tokens=state['max_new_tokens'], | |
temperature=state['temperature'], | |
top_p=state['top_p'], | |
top_k=state['top_k'], | |
repeat_penalty=state['repetition_penalty'], | |
presence_penalty=state['presence_penalty'], | |
frequency_penalty=state['frequency_penalty'], | |
tfs_z=state['tfs'], | |
mirostat_mode=int(state['mirostat_mode']), | |
mirostat_tau=state['mirostat_tau'], | |
mirostat_eta=state['mirostat_eta'], | |
stream=True, | |
logits_processor=logit_processors, | |
grammar=self.grammar | |
) | |
output = "" | |
for completion_chunk in completion_chunks: | |
if shared.stop_everything: | |
break | |
text = completion_chunk['choices'][0]['text'] | |
output += text | |
if callback: | |
callback(text) | |
return output | |
def generate_with_streaming(self, *args, **kwargs): | |
with Iteratorize(self.generate, args, kwargs, callback=None) as generator: | |
reply = '' | |
for token in generator: | |
reply += token | |
yield reply | |