Spaces:
Runtime error
Runtime error
import random | |
import traceback | |
from pathlib import Path | |
import torch | |
from exllamav2 import ( | |
ExLlamaV2, | |
ExLlamaV2Cache, | |
ExLlamaV2Config, | |
ExLlamaV2Tokenizer | |
) | |
from exllamav2.generator import ExLlamaV2BaseGenerator, ExLlamaV2Sampler | |
from modules import shared | |
from modules.logging_colors import logger | |
from modules.text_generation import get_max_prompt_length | |
try: | |
import flash_attn | |
except ModuleNotFoundError: | |
logger.warning( | |
'You are running ExLlamaV2 without flash-attention. This will cause the VRAM usage ' | |
'to be a lot higher than it could be.\n' | |
'Try installing flash-attention following the instructions here: ' | |
'https://github.com/Dao-AILab/flash-attention#installation-and-features' | |
) | |
pass | |
except Exception: | |
logger.warning('Failed to load flash-attention due to the following error:\n') | |
traceback.print_exc() | |
class Exllamav2Model: | |
def __init__(self): | |
pass | |
def from_pretrained(self, path_to_model): | |
path_to_model = Path(f'{shared.args.model_dir}') / Path(path_to_model) | |
config = ExLlamaV2Config() | |
config.model_dir = str(path_to_model) | |
config.prepare() | |
config.max_seq_len = shared.args.max_seq_len | |
config.scale_pos_emb = shared.args.compress_pos_emb | |
config.scale_alpha_value = shared.args.alpha_value | |
model = ExLlamaV2(config) | |
split = None | |
if shared.args.gpu_split: | |
split = [float(alloc) for alloc in shared.args.gpu_split.split(",")] | |
model.load(split) | |
tokenizer = ExLlamaV2Tokenizer(config) | |
cache = ExLlamaV2Cache(model) | |
generator = ExLlamaV2BaseGenerator(model, cache, tokenizer) | |
result = self() | |
result.model = model | |
result.cache = cache | |
result.tokenizer = tokenizer | |
result.generator = generator | |
result.loras = None | |
return result, result | |
def encode(self, string, **kwargs): | |
return self.tokenizer.encode(string, add_bos=True, encode_special_tokens=True) | |
def decode(self, ids, **kwargs): | |
if isinstance(ids, list): | |
ids = torch.tensor([ids]) | |
elif isinstance(ids, torch.Tensor) and ids.numel() == 1: | |
ids = ids.view(1, -1) | |
return self.tokenizer.decode(ids, decode_special_tokens=True)[0] | |
def get_logits(self, token_ids, **kwargs): | |
self.cache.current_seq_len = 0 | |
if token_ids.shape[-1] > 1: | |
self.model.forward(token_ids[:, :-1], self.cache, input_mask=None, preprocess_only=True, loras=self.loras) | |
return self.model.forward(token_ids[:, -1:], self.cache, input_mask=None, loras=self.loras, **kwargs).float().cpu() | |
def generate_with_streaming(self, prompt, state): | |
settings = ExLlamaV2Sampler.Settings() | |
settings.temperature = state['temperature'] | |
settings.top_k = state['top_k'] | |
settings.top_p = state['top_p'] | |
settings.typical = state['typical_p'] | |
settings.token_repetition_penalty = state['repetition_penalty'] | |
settings.token_repetition_range = -1 if state['repetition_penalty_range'] <= 0 else state['repetition_penalty_range'] | |
if state['ban_eos_token']: | |
settings.disallow_tokens(self.tokenizer, [self.tokenizer.eos_token_id]) | |
if state['custom_token_bans']: | |
to_ban = [int(x) for x in state['custom_token_bans'].split(',')] | |
if len(to_ban) > 0: | |
settings.disallow_tokens(self.tokenizer, to_ban) | |
ids = self.tokenizer.encode(prompt, add_bos=state['add_bos_token'], encode_special_tokens=True) | |
ids = ids[:, -get_max_prompt_length(state):] | |
initial_len = ids.shape[-1] | |
if state['auto_max_new_tokens']: | |
max_new_tokens = state['truncation_length'] - ids.shape[-1] | |
else: | |
max_new_tokens = state['max_new_tokens'] | |
# _gen_begin_base | |
self.cache.current_seq_len = 0 | |
self.model.forward(ids[:, :-1], self.cache, input_mask=None, preprocess_only=True, loras=self.loras) | |
has_leading_space = False | |
for i in range(max_new_tokens): | |
logits = self.model.forward(ids[:, -1:], self.cache, input_mask=None, loras=self.loras).float().cpu() | |
token, _, _ = ExLlamaV2Sampler.sample(logits, settings, ids, random.random(), self.tokenizer) | |
ids = torch.cat([ids, token], dim=1) | |
if i == 0 and self.tokenizer.tokenizer.IdToPiece(int(token)).startswith('▁'): | |
has_leading_space = True | |
decoded_text = self.tokenizer.decode(ids[:, initial_len:], decode_special_tokens=not state['skip_special_tokens'])[0] | |
if has_leading_space: | |
decoded_text = ' ' + decoded_text | |
yield decoded_text | |
if token.item() == self.tokenizer.eos_token_id or shared.stop_everything: | |
break | |
def generate(self, prompt, state): | |
output = '' | |
for output in self.generate_with_streaming(prompt, state): | |
pass | |
return output | |