|
import torch |
|
from lib.infer_pack.models import ( |
|
SynthesizerTrnMs256NSFsid, |
|
SynthesizerTrnMs256NSFsid_nono, |
|
SynthesizerTrnMs768NSFsid, |
|
SynthesizerTrnMs768NSFsid_nono, |
|
) |
|
from vc_infer_pipeline import VC |
|
import traceback, pdb |
|
from lib.audio import load_audio |
|
import numpy as np |
|
import os |
|
from fairseq import checkpoint_utils |
|
import soundfile as sf |
|
from gtts import gTTS |
|
import edge_tts |
|
import asyncio |
|
import nest_asyncio |
|
|
|
|
|
def get_vc(sid, to_return_protect0, to_return_protect1): |
|
global n_spk, tgt_sr, net_g, vc, cpt, version |
|
if sid == "" or sid == []: |
|
global hubert_model |
|
if hubert_model is not None: |
|
print("clean_empty_cache") |
|
del net_g, n_spk, vc, hubert_model, tgt_sr |
|
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
if_f0 = cpt.get("f0", 1) |
|
version = cpt.get("version", "v1") |
|
if version == "v1": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs256NSFsid( |
|
*cpt["config"], is_half=config.is_half |
|
) |
|
else: |
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) |
|
elif version == "v2": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs768NSFsid( |
|
*cpt["config"], is_half=config.is_half |
|
) |
|
else: |
|
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) |
|
del net_g, cpt |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
return {"visible": False, "__type__": "update"} |
|
person = "%s/%s" % (weight_root, sid) |
|
print("loading %s" % person) |
|
cpt = torch.load(person, map_location="cpu") |
|
tgt_sr = cpt["config"][-1] |
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] |
|
if_f0 = cpt.get("f0", 1) |
|
if if_f0 == 0: |
|
to_return_protect0 = to_return_protect1 = { |
|
"visible": False, |
|
"value": 0.5, |
|
"__type__": "update", |
|
} |
|
else: |
|
to_return_protect0 = { |
|
"visible": True, |
|
"value": to_return_protect0, |
|
"__type__": "update", |
|
} |
|
to_return_protect1 = { |
|
"visible": True, |
|
"value": to_return_protect1, |
|
"__type__": "update", |
|
} |
|
version = cpt.get("version", "v1") |
|
if version == "v1": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half) |
|
else: |
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) |
|
elif version == "v2": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half) |
|
else: |
|
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) |
|
del net_g.enc_q |
|
print(net_g.load_state_dict(cpt["weight"], strict=False)) |
|
net_g.eval().to(config.device) |
|
if config.is_half: |
|
net_g = net_g.half() |
|
else: |
|
net_g = net_g.float() |
|
vc = VC(tgt_sr, config) |
|
n_spk = cpt["config"][-3] |
|
return ( |
|
{"visible": True, "maximum": n_spk, "__type__": "update"}, |
|
to_return_protect0, |
|
to_return_protect1, |
|
) |
|
|
|
|
|
|
|
|
|
def vc_single( |
|
sid, |
|
input_audio_path, |
|
f0_up_key, |
|
f0_file, |
|
f0_method, |
|
file_index, |
|
file_index2, |
|
|
|
index_rate, |
|
filter_radius, |
|
resample_sr, |
|
rms_mix_rate, |
|
protect, |
|
): |
|
global tgt_sr, net_g, vc, hubert_model, version, cpt |
|
if input_audio_path is None: |
|
return "You need to upload an audio", None |
|
f0_up_key = int(f0_up_key) |
|
try: |
|
audio = load_audio(input_audio_path, 16000) |
|
audio_max = np.abs(audio).max() / 0.95 |
|
if audio_max > 1: |
|
audio /= audio_max |
|
times = [0, 0, 0] |
|
if not hubert_model: |
|
load_hubert() |
|
if_f0 = cpt.get("f0", 1) |
|
file_index = ( |
|
( |
|
file_index.strip(" ") |
|
.strip('"') |
|
.strip("\n") |
|
.strip('"') |
|
.strip(" ") |
|
.replace("trained", "added") |
|
) |
|
if file_index != "" |
|
else file_index2 |
|
) |
|
|
|
|
|
|
|
audio_opt = vc.pipeline( |
|
hubert_model, |
|
net_g, |
|
sid, |
|
audio, |
|
input_audio_path, |
|
times, |
|
f0_up_key, |
|
f0_method, |
|
file_index, |
|
|
|
index_rate, |
|
if_f0, |
|
filter_radius, |
|
tgt_sr, |
|
resample_sr, |
|
rms_mix_rate, |
|
version, |
|
protect, |
|
f0_file=f0_file, |
|
) |
|
if tgt_sr != resample_sr >= 16000: |
|
tgt_sr = resample_sr |
|
index_info = ( |
|
"Using index:%s." % file_index |
|
if os.path.exists(file_index) |
|
else "Index not used." |
|
) |
|
return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % ( |
|
index_info, |
|
times[0], |
|
times[1], |
|
times[2], |
|
), (tgt_sr, audio_opt) |
|
except: |
|
info = traceback.format_exc() |
|
print(info) |
|
return info, (None, None) |
|
|
|
|
|
|
|
|
|
def load_hubert(): |
|
global hubert_model |
|
models, _, _ = checkpoint_utils.load_model_ensemble_and_task( |
|
["hubert_base.pt"], |
|
suffix="", |
|
) |
|
hubert_model = models[0] |
|
hubert_model = hubert_model.to(config.device) |
|
if config.is_half: |
|
hubert_model = hubert_model.half() |
|
else: |
|
hubert_model = hubert_model.float() |
|
hubert_model.eval() |
|
|
|
|
|
def use_fp32_config(): |
|
for config_file in [ |
|
"32k.json", |
|
"40k.json", |
|
"48k.json", |
|
"48k_v2.json", |
|
"32k_v2.json", |
|
]: |
|
with open(f"configs/{config_file}", "r") as f: |
|
strr = f.read().replace("true", "false") |
|
with open(f"configs/{config_file}", "w") as f: |
|
f.write(strr) |
|
|
|
|
|
class Config: |
|
def __init__(self, device, is_half): |
|
self.device = device |
|
self.is_half = is_half |
|
self.n_cpu = 2 |
|
self.gpu_name = None |
|
self.gpu_mem = None |
|
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() |
|
|
|
def device_config(self) -> tuple: |
|
if torch.cuda.is_available(): |
|
i_device = int(self.device.split(":")[-1]) |
|
self.gpu_name = torch.cuda.get_device_name(i_device) |
|
if ( |
|
("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) |
|
or "P40" in self.gpu_name.upper() |
|
or "1060" in self.gpu_name |
|
or "1070" in self.gpu_name |
|
or "1080" in self.gpu_name |
|
): |
|
print("16 series / 10 series graphics cards and P40 force single precision") |
|
self.is_half = False |
|
for config_file in ["32k.json", "40k.json", "48k.json"]: |
|
with open(f"configs/{config_file}", "r") as f: |
|
strr = f.read().replace("true", "false") |
|
with open(f"configs/{config_file}", "w") as f: |
|
f.write(strr) |
|
with open("trainset_preprocess_pipeline_print.py", "r") as f: |
|
strr = f.read().replace("3.7", "3.0") |
|
with open("trainset_preprocess_pipeline_print.py", "w") as f: |
|
f.write(strr) |
|
else: |
|
self.gpu_name = None |
|
self.gpu_mem = int( |
|
torch.cuda.get_device_properties(i_device).total_memory |
|
/ 1024 |
|
/ 1024 |
|
/ 1024 |
|
+ 0.4 |
|
) |
|
if self.gpu_mem <= 4: |
|
with open("trainset_preprocess_pipeline_print.py", "r") as f: |
|
strr = f.read().replace("3.7", "3.0") |
|
with open("trainset_preprocess_pipeline_print.py", "w") as f: |
|
f.write(strr) |
|
elif torch.backends.mps.is_available(): |
|
print("Supported N-card not found, using MPS for inference") |
|
self.device = "mps" |
|
else: |
|
print("No supported N-card found, using CPU for inference") |
|
self.device = "cpu" |
|
self.is_half = False |
|
use_fp32_config() |
|
|
|
if self.n_cpu == 0: |
|
self.n_cpu = cpu_count() |
|
|
|
if self.is_half: |
|
|
|
x_pad = 3 |
|
x_query = 10 |
|
x_center = 60 |
|
x_max = 65 |
|
else: |
|
|
|
x_pad = 1 |
|
x_query = 6 |
|
x_center = 38 |
|
x_max = 41 |
|
|
|
if self.gpu_mem != None and self.gpu_mem <= 4: |
|
x_pad = 1 |
|
x_query = 5 |
|
x_center = 30 |
|
x_max = 32 |
|
|
|
|
|
|
|
|
|
print(self.device, self.is_half) |
|
|
|
return x_pad, x_query, x_center, x_max |
|
|
|
|
|
class ClassVoices: |
|
def __init__(self): |
|
self.file_index = "" |
|
|
|
def apply_conf(self, f0method, |
|
model_voice_path00, transpose00, file_index2_00, |
|
model_voice_path01, transpose01, file_index2_01, |
|
model_voice_path02, transpose02, file_index2_02, |
|
model_voice_path03, transpose03, file_index2_03, |
|
model_voice_path04, transpose04, file_index2_04, |
|
model_voice_path05, transpose05, file_index2_05, |
|
model_voice_path99, transpose99, file_index2_99): |
|
|
|
|
|
self.f0method = f0method |
|
|
|
self.model_voice_path00 = model_voice_path00 |
|
self.transpose00 = transpose00 |
|
self.file_index200 = file_index2_00 |
|
|
|
self.model_voice_path01 = model_voice_path01 |
|
self.transpose01 = transpose01 |
|
self.file_index201 = file_index2_01 |
|
|
|
self.model_voice_path02 = model_voice_path02 |
|
self.transpose02 = transpose02 |
|
self.file_index202 = file_index2_02 |
|
|
|
self.model_voice_path03 = model_voice_path03 |
|
self.transpose03 = transpose03 |
|
self.file_index203 = file_index2_03 |
|
|
|
self.model_voice_path04 = model_voice_path04 |
|
self.transpose04 = transpose04 |
|
self.file_index204 = file_index2_04 |
|
|
|
self.model_voice_path05 = model_voice_path05 |
|
self.transpose05 = transpose05 |
|
self.file_index205 = file_index2_05 |
|
|
|
self.model_voice_path99 = model_voice_path99 |
|
self.transpose99 = transpose99 |
|
self.file_index299 = file_index2_99 |
|
return "CONFIGURATION APPLIED" |
|
|
|
def custom_voice(self, |
|
_values, |
|
audio_files, |
|
model_voice_path='', |
|
transpose=0, |
|
f0method='pm', |
|
file_index='', |
|
file_index2='', |
|
): |
|
|
|
|
|
|
|
get_vc( |
|
sid=model_voice_path, |
|
to_return_protect0=0.33, |
|
to_return_protect1=0.33 |
|
) |
|
|
|
for _value_item in _values: |
|
filename = "audio2/"+audio_files[_value_item] if _value_item != "test" else audio_files[0] |
|
|
|
try: |
|
print(audio_files[_value_item], model_voice_path) |
|
except: |
|
pass |
|
|
|
info_, (sample_, audio_output_) = vc_single( |
|
sid=0, |
|
input_audio_path=filename, |
|
f0_up_key=transpose, |
|
f0_file=None, |
|
f0_method= f0method, |
|
file_index= file_index, |
|
file_index2= file_index2, |
|
|
|
index_rate= float(0.66), |
|
filter_radius= int(3), |
|
resample_sr= int(0), |
|
rms_mix_rate= float(0.25), |
|
protect= float(0.33), |
|
) |
|
|
|
sf.write( |
|
file= filename, |
|
samplerate=sample_, |
|
data=audio_output_ |
|
) |
|
|
|
|
|
|
|
def make_test(self, |
|
tts_text, |
|
tts_voice, |
|
model_path, |
|
index_path, |
|
transpose, |
|
f0_method, |
|
): |
|
os.system("rm -rf test") |
|
filename = "test/test.wav" |
|
|
|
if "SET_LIMIT" == os.getenv("DEMO"): |
|
if len(tts_text) > 60: |
|
tts_text = tts_text[:60] |
|
print("DEMO; limit to 60 characters") |
|
|
|
language = tts_voice[:2] |
|
try: |
|
os.system("mkdir test") |
|
|
|
asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save(filename)) |
|
except: |
|
try: |
|
tts = gTTS(tts_text, lang=language) |
|
tts.save(filename) |
|
tts.save |
|
print(f'No audio was received. Please change the tts voice for {tts_voice}. USING gTTS.') |
|
except: |
|
tts = gTTS('a', lang=language) |
|
tts.save(filename) |
|
print('Error: Audio will be replaced.') |
|
|
|
os.system("cp test/test.wav test/real_test.wav") |
|
|
|
self([],[]) |
|
|
|
self.custom_voice( |
|
["test"], |
|
["test/test.wav"], |
|
model_voice_path=model_path, |
|
transpose=transpose, |
|
f0method=f0_method, |
|
file_index='', |
|
file_index2=index_path, |
|
) |
|
return "test/test.wav", "test/real_test.wav" |
|
|
|
def __call__(self, speakers_list, audio_files): |
|
|
|
speakers_indices = {} |
|
|
|
for index, speak_ in enumerate(speakers_list): |
|
if speak_ in speakers_indices: |
|
speakers_indices[speak_].append(index) |
|
else: |
|
speakers_indices[speak_] = [index] |
|
|
|
|
|
|
|
global weight_root, index_root, config, hubert_model |
|
weight_root = "weights" |
|
names = [] |
|
for name in os.listdir(weight_root): |
|
if name.endswith(".pth"): |
|
names.append(name) |
|
|
|
index_root = "logs" |
|
index_paths = [] |
|
for name in os.listdir(index_root): |
|
if name.endswith(".index"): |
|
index_paths.append(name) |
|
|
|
print(names, index_paths) |
|
|
|
hubert_model = None |
|
config = Config('cuda:0', is_half=True) |
|
|
|
|
|
for _speak, _values in speakers_indices.items(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if _speak == "SPEAKER_00": |
|
self.custom_voice( |
|
_values, |
|
audio_files, |
|
model_voice_path=self.model_voice_path00, |
|
file_index2=self.file_index200, |
|
transpose=self.transpose00, |
|
f0method=self.f0method, |
|
file_index=self.file_index, |
|
) |
|
elif _speak == "SPEAKER_01": |
|
self.custom_voice( |
|
_values, |
|
audio_files, |
|
model_voice_path=self.model_voice_path01, |
|
file_index2=self.file_index201, |
|
transpose=self.transpose01, |
|
f0method=self.f0method, |
|
file_index=self.file_index, |
|
) |
|
elif _speak == "SPEAKER_02": |
|
self.custom_voice( |
|
_values, |
|
audio_files, |
|
model_voice_path=self.model_voice_path02, |
|
file_index2=self.file_index202, |
|
transpose=self.transpose02, |
|
f0method=self.f0method, |
|
file_index=self.file_index, |
|
) |
|
elif _speak == "SPEAKER_03": |
|
self.custom_voice( |
|
_values, |
|
audio_files, |
|
model_voice_path=self.model_voice_path03, |
|
file_index2=self.file_index203, |
|
transpose=self.transpose03, |
|
f0method=self.f0method, |
|
file_index=self.file_index, |
|
) |
|
elif _speak == "SPEAKER_04": |
|
self.custom_voice( |
|
_values, |
|
audio_files, |
|
model_voice_path=self.model_voice_path04, |
|
file_index2=self.file_index204, |
|
transpose=self.transpose04, |
|
f0method=self.f0method, |
|
file_index=self.file_index, |
|
) |
|
elif _speak == "SPEAKER_05": |
|
self.custom_voice( |
|
_values, |
|
audio_files, |
|
model_voice_path=self.model_voice_path05, |
|
file_index2=self.file_index205, |
|
transpose=self.transpose05, |
|
f0method=self.f0method, |
|
file_index=self.file_index, |
|
) |
|
elif _speak == "SPEAKER_99": |
|
self.custom_voice( |
|
_values, |
|
audio_files, |
|
model_voice_path=self.model_voice_path99, |
|
file_index2=self.file_index299, |
|
transpose=self.transpose99, |
|
f0method=self.f0method, |
|
file_index=self.file_index, |
|
) |
|
else: |
|
pass |
|
|