Spaces:
Runtime error
Runtime error
import pandas as pd | |
import streamlit as st | |
import io | |
def extract_table_and_format_from_markdown_text(markdown_table: str) -> pd.DataFrame: | |
"""Extracts a table from a markdown text and formats it as a pandas DataFrame. | |
Args: | |
text (str): Markdown text containing a table. | |
Returns: | |
pd.DataFrame: Table as pandas DataFrame. | |
""" | |
df = ( | |
pd.read_table(io.StringIO(markdown_table), sep="|", header=0, index_col=1) | |
.dropna(axis=1, how="all") # drop empty columns | |
.iloc[1:] # drop first row which is the "----" separator of the original markdown table | |
.sort_index(ascending=True) | |
.replace(r"^\s*$", float("nan"), regex=True) | |
.astype(float, errors="ignore") | |
) | |
# remove whitespace from column names and index | |
df.columns = df.columns.str.strip() | |
df.index = df.index.str.strip() | |
return df | |
def extract_markdown_table_from_multiline(multiline: str, table_headline: str, next_headline_start: str = "#") -> str: | |
"""Extracts the markdown table from a multiline string. | |
Args: | |
multiline (str): content of README.md file. | |
table_headline (str): Headline of the table in the README.md file. | |
next_headline_start (str, optional): Start of the next headline. Defaults to "#". | |
Returns: | |
str: Markdown table. | |
Raises: | |
ValueError: If the table could not be found. | |
""" | |
# extract everything between the table headline and the next headline | |
table = [] | |
start = False | |
for line in multiline.split("\n"): | |
if line.startswith(table_headline): | |
start = True | |
elif line.startswith(next_headline_start): | |
start = False | |
elif start: | |
table.append(line + "\n") | |
if len(table) == 0: | |
raise ValueError(f"Could not find table with headline '{table_headline}'") | |
return "".join(table) | |
def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame: | |
""" | |
Adds a UI on top of a dataframe to let viewers filter columns | |
Modified from https://blog.streamlit.io/auto-generate-a-dataframe-filtering-ui-in-streamlit-with-filter_dataframe/ | |
Args: | |
df (pd.DataFrame): Original dataframe | |
Returns: | |
pd.DataFrame: Filtered dataframe | |
""" | |
modify = st.checkbox("Add filters") | |
if not modify: | |
return df | |
df = df.copy() | |
modification_container = st.container() | |
with modification_container: | |
to_filter_index = st.multiselect("Filter by model:", df.index) | |
if to_filter_index: | |
df = pd.DataFrame(df.loc[to_filter_index]) | |
to_filter_columns = st.multiselect("Filter by benchmark:", df.columns) | |
if to_filter_columns: | |
df = pd.DataFrame(df[to_filter_columns]) | |
return df | |
def setup_basic(): | |
title = "π LLM-Leaderboard" | |
st.set_page_config( | |
page_title=title, | |
page_icon="π", | |
layout="wide", | |
) | |
st.title(title) | |
st.markdown( | |
""" | |
A joint community effort to create one central leaderboard for LLMs. | |
Visit [llm-leaderboard](https://github.com/LudwigStumpp/llm-leaderboard) to contribute. | |
""" | |
) | |
def setup_leaderboard(readme: str): | |
leaderboard_table = extract_markdown_table_from_multiline(readme, table_headline="## Leaderboard") | |
df_leaderboard = extract_table_and_format_from_markdown_text(leaderboard_table) | |
st.markdown("## Leaderboard") | |
st.dataframe(filter_dataframe(df_leaderboard)) | |
def setup_benchmarks(readme: str): | |
benchmarks_table = extract_markdown_table_from_multiline(readme, table_headline="## Benchmarks") | |
df_benchmarks = extract_table_and_format_from_markdown_text(benchmarks_table) | |
st.markdown("## Covered Benchmarks") | |
selected_benchmark = st.selectbox("Select a benchmark to learn more:", df_benchmarks.index.unique()) | |
df_selected = df_benchmarks.loc[selected_benchmark] | |
text = [ | |
f"Name: {selected_benchmark} ", | |
] | |
for key in df_selected.keys(): | |
text.append(f"{key}: {df_selected[key]} ") | |
st.markdown("\n".join(text)) | |
def setup_sources(readme: str): | |
sources_table = extract_markdown_table_from_multiline(readme, table_headline="## Sources") | |
df_sources = extract_table_and_format_from_markdown_text(sources_table) | |
st.markdown("## Sources of Above Figures") | |
selected_source = st.selectbox("Select a source to learn more:", df_sources.index.unique()) | |
df_selected = df_sources.loc[selected_source] | |
text = [ | |
f"Author: {selected_source} ", | |
] | |
for key in df_selected.keys(): | |
text.append(f"{key}: {df_selected[key]} ") | |
st.markdown("\n".join(text)) | |
def setup_footer(): | |
st.markdown( | |
""" | |
--- | |
Made with β€οΈ by the awesome open-source community from all over π. | |
""" | |
) | |
def main(): | |
setup_basic() | |
with open("README.md", "r") as f: | |
readme = f.read() | |
setup_leaderboard(readme) | |
setup_benchmarks(readme) | |
setup_sources(readme) | |
setup_footer() | |
if __name__ == "__main__": | |
main() | |