ludusc commited on
Commit
c1562ad
·
2 Parent(s): 2bd71df 731be70

Merge branch 'main' of https://huggingface.co/spaces/ludusc/latent-space-theories

Browse files
Files changed (1) hide show
  1. DisentanglementBase.py +54 -38
DisentanglementBase.py CHANGED
@@ -366,6 +366,7 @@ class DisentanglementBase:
366
  axs[i].set_title(np.round(lambd, 2))
367
  plt.tight_layout()
368
  plt.savefig(join(self.repo_folder, 'figures', name+'.jpg'))
 
369
  return images, lambdas
370
 
371
  def get_verification_score(self, separation_vector, feature_id, samples=10, lambd=1, savefig=False, feature=None, method=None):
@@ -377,21 +378,26 @@ class DisentanglementBase:
377
 
378
  for seed in tqdm(items):
379
  images, lambdas = self.generate_changes(seed, separation_vector, min_epsilon=-lambd, max_epsilon=lambd, count=3, savefig=savefig, feature=feature, method=method)
380
- colors_negative = extract_color(images[0], 5, 1, None)
381
- h0, s0, v0 = ImageColor.getcolor(colors_negative[0], 'HSV')
 
382
 
383
- colors_orig = extract_color(images[1], 5, 1, None)
384
- h1, s1, v1 = ImageColor.getcolor(colors_orig[0], 'HSV')
385
-
386
- colors_positive = extract_color(images[2], 5, 1, None)
387
- h2, s2, v2 = ImageColor.getcolor(colors_positive[0], 'HSV')
 
 
 
 
 
 
388
 
389
- if h1 > hue_low and h1 < hue_high:
390
- samples -= 1
391
- else:
392
- if (h0 > hue_low and h0 < hue_high) or (h2 > hue_low and h2 < hue_high):
393
- matches += 1
394
 
 
395
  return np.round(matches / samples, 2)
396
 
397
 
@@ -408,18 +414,18 @@ def main():
408
  with dnnlib.util.open_url(model_file) as f:
409
  model = legacy.load_network_pkl(f)['G_ema'] # type: ignore
410
 
411
- colors_list = ['Warm Pink Red', 'Red Orange', 'Orange Yellow', 'Gold Yellow', 'Chartreuse Green',
412
- 'Kelly Green', 'Green Blue Seafoam', 'Blue Green Cyan',
413
- 'Warm Blue', 'Indigo Blue Purple', 'Purple Magenta', 'Magenta Pink']
414
 
415
  scores = []
416
- kwargs = {'CL method':['LR', 'SVM'], 'C':[0.1, 1], 'sign':[True, False], 'num_factors':[1, 10, 20, 50], 'cutout': [None, 0.2], 'max_lambda':[6, 10, 1], 'samples':50, 'lambda_verif':[1, 3, 6]}
417
 
418
  for space in ['w', 'z', 's']:
419
  print('Launching experiment with space:', space)
420
  disentanglemnet_exp = DisentanglementBase(repo_folder, model, annotations, df, space=space, colors_list=colors_list, compute_s=False)
421
 
422
- for method in ['StyleSpace', 'InterFaceGAN', 'GANSpace']:
423
  if space != 's' and method == 'InterFaceGAN':
424
  print('Now obtaining separation vector for using InterfaceGAN')
425
  for met in kwargs['CL method']:
@@ -427,17 +433,22 @@ def main():
427
  separation_vectors = disentanglemnet_exp.InterFaceGAN_separation_vector(method=met, C=c)
428
  for i, color in enumerate(colors_list):
429
  print('Generating images with variations')
430
- seed = random.randint(0,100000)
431
- for eps in kwargs['max_lambda']:
432
- disentanglemnet_exp.generate_changes(seed, separation_vectors[i], min_epsilon=-eps, max_epsilon=eps, savefig=True, feature=color, method=method)
433
-
 
434
  print('Finally obtaining verification score')
435
  for verif in kwargs['lambda_verif']:
436
- score = disentanglemnet_exp.get_verification_score(separation_vectors[i], i, samples=kwargs['samples'], lambd=verif, savefig=True, feature=color, method=method)
437
  print('Score for method', method, 'on space', space, 'for color', color, ':', score)
438
 
439
- scores.append([space, method, color, score, 'classification method:' + met + ', regularization: ' + str(c) + ', verification lambda:' + str(verif)])
440
-
 
 
 
 
441
  elif method == 'StyleSpace':
442
  print('Now obtaining separation vector for using StyleSpace')
443
  for sign in kwargs['sign']:
@@ -446,35 +457,40 @@ def main():
446
  separation_vectors = disentanglemnet_exp.StyleSpace_separation_vector(sign=sign, num_factors=num_factors, cutout=cutout)
447
  for i, color in enumerate(colors_list):
448
  print('Generating images with variations')
449
- seed = random.randint(0,100000)
450
- for eps in kwargs['max_lambda']:
451
- disentanglemnet_exp.generate_changes(seed, separation_vectors[i], min_epsilon=-eps, max_epsilon=eps, savefig=True, feature=color, method=method)
452
-
 
453
  print('Finally obtaining verification score')
454
  for verif in kwargs['lambda_verif']:
455
- score = disentanglemnet_exp.get_verification_score(separation_vectors[i], i, samples=kwargs['samples'], lambd=verif, savefig=True, feature=color, method=method)
456
  print('Score for method', method, 'on space', space, 'for color', color, ':', score)
457
 
458
- scores.append([space, method, color, score, 'using sign:' + str(sign) + ', number of factors: ' + str(num_factors) + ', using cutout: ' + str(cutout) + ', verification lambda:' + str(verif)])
459
-
 
 
 
460
  if space == 'w' and method == 'GANSpace':
461
  print('Now obtaining separation vector for using GANSpace')
462
  separation_vectors = disentanglemnet_exp.GANSpace_separation_vectors(100)
463
- for i in range(100):
464
  print('Generating images with variations')
465
  seed = random.randint(0,100000)
466
- for eps in kwargs['max_lambda']:
467
- disentanglemnet_exp.generate_changes(seed, separation_vectors[i], min_epsilon=-eps, max_epsilon=eps, savefig=True, feature=color, method=method)
468
-
469
- score = None
470
- scores.append([space, method, color, score, '100'])
 
471
  else:
472
  print('Skipping', method, 'on space', space)
473
  continue
474
 
475
 
476
 
477
- score_df = pd.DataFrame(scores, columns=['space', 'method', 'color', 'score', 'kwargs'])
478
  print(score_df)
479
  score_df.to_csv(join(repo_folder, 'data/scores.csv'))
480
 
 
366
  axs[i].set_title(np.round(lambd, 2))
367
  plt.tight_layout()
368
  plt.savefig(join(self.repo_folder, 'figures', name+'.jpg'))
369
+ plt.close()
370
  return images, lambdas
371
 
372
  def get_verification_score(self, separation_vector, feature_id, samples=10, lambd=1, savefig=False, feature=None, method=None):
 
378
 
379
  for seed in tqdm(items):
380
  images, lambdas = self.generate_changes(seed, separation_vector, min_epsilon=-lambd, max_epsilon=lambd, count=3, savefig=savefig, feature=feature, method=method)
381
+ try:
382
+ colors_negative = extract_color(images[0], 5, 1, None)
383
+ h0, s0, v0 = ImageColor.getcolor(colors_negative[0], 'HSV')
384
 
385
+ colors_orig = extract_color(images[1], 5, 1, None)
386
+ h1, s1, v1 = ImageColor.getcolor(colors_orig[0], 'HSV')
387
+
388
+ colors_positive = extract_color(images[2], 5, 1, None)
389
+ h2, s2, v2 = ImageColor.getcolor(colors_positive[0], 'HSV')
390
+
391
+ if h1 > hue_low and h1 < hue_high:
392
+ samples -= 1
393
+ else:
394
+ if (h0 > hue_low and h0 < hue_high) or (h2 > hue_low and h2 < hue_high):
395
+ matches += 1
396
 
397
+ except Exception as e:
398
+ print(e)
 
 
 
399
 
400
+
401
  return np.round(matches / samples, 2)
402
 
403
 
 
414
  with dnnlib.util.open_url(model_file) as f:
415
  model = legacy.load_network_pkl(f)['G_ema'] # type: ignore
416
 
417
+ colors_list = ['Red', 'Orange', 'Yellow', 'Yellow Green', 'Chartreuse Green',
418
+ 'Kelly Green', 'Green Blue Seafoam', 'Cyan Blue',
419
+ 'Warm Blue', 'Indigo', 'Purple Magenta', 'Magenta Pink']
420
 
421
  scores = []
422
+ kwargs = {'CL method':['LR', 'SVM'], 'C':[0.1, 1], 'sign':[True, False], 'num_factors':[1, 10, 20], 'cutout': [None], 'max_lambda':[18, 3], 'samples':50, 'lambda_verif':[10, 5, 3]}
423
 
424
  for space in ['w', 'z', 's']:
425
  print('Launching experiment with space:', space)
426
  disentanglemnet_exp = DisentanglementBase(repo_folder, model, annotations, df, space=space, colors_list=colors_list, compute_s=False)
427
 
428
+ for method in ['InterFaceGAN', 'StyleSpace', 'GANSpace']:
429
  if space != 's' and method == 'InterFaceGAN':
430
  print('Now obtaining separation vector for using InterfaceGAN')
431
  for met in kwargs['CL method']:
 
433
  separation_vectors = disentanglemnet_exp.InterFaceGAN_separation_vector(method=met, C=c)
434
  for i, color in enumerate(colors_list):
435
  print('Generating images with variations')
436
+ for s in range(30):
437
+ seed = random.randint(0,100000)
438
+ for eps in kwargs['max_lambda']:
439
+ disentanglemnet_exp.generate_changes(seed, separation_vectors[i], min_epsilon=-eps, max_epsilon=eps, savefig=True, feature=color, method=str(method) + '_' + str(met) + '_' + str(c))
440
+
441
  print('Finally obtaining verification score')
442
  for verif in kwargs['lambda_verif']:
443
+ score = disentanglemnet_exp.get_verification_score(separation_vectors[i], i, samples=kwargs['samples'], lambd=verif, savefig=False, feature=color, method=method)
444
  print('Score for method', method, 'on space', space, 'for color', color, ':', score)
445
 
446
+ scores.append([space, method, color, score, 'classification method:' + met + ', regularization: ' + str(c) + ', verification lambda:' + str(verif), ', '.join(list(separation_vectors[i].astype(str)))])
447
+ score_df = pd.DataFrame(scores, columns=['space', 'method', 'color', 'score', 'kwargs', 'vector'])
448
+ print(score_df)
449
+ score_df.to_csv(join(repo_folder, 'data/scores.csv'))
450
+
451
+
452
  elif method == 'StyleSpace':
453
  print('Now obtaining separation vector for using StyleSpace')
454
  for sign in kwargs['sign']:
 
457
  separation_vectors = disentanglemnet_exp.StyleSpace_separation_vector(sign=sign, num_factors=num_factors, cutout=cutout)
458
  for i, color in enumerate(colors_list):
459
  print('Generating images with variations')
460
+ for s in range(30):
461
+ seed = random.randint(0,100000)
462
+ for eps in kwargs['max_lambda']:
463
+ disentanglemnet_exp.generate_changes(seed, separation_vectors[i], min_epsilon=-eps, max_epsilon=eps, savefig=True, feature=color, method=method + '_' + str(num_factors) + '_' + str(cutout) + '_' + str(sign))
464
+
465
  print('Finally obtaining verification score')
466
  for verif in kwargs['lambda_verif']:
467
+ score = disentanglemnet_exp.get_verification_score(separation_vectors[i], i, samples=kwargs['samples'], lambd=verif, savefig=False, feature=color, method=method)
468
  print('Score for method', method, 'on space', space, 'for color', color, ':', score)
469
 
470
+ scores.append([space, method, color, score, 'using sign:' + str(sign) + ', number of factors: ' + str(num_factors) + ', using cutout: ' + str(cutout) + ', verification lambda:' + str(verif), ', '.join(list(separation_vectors[i].astype(str)))])
471
+ score_df = pd.DataFrame(scores, columns=['space', 'method', 'color', 'score', 'kwargs', 'vector'])
472
+ print(score_df)
473
+ score_df.to_csv(join(repo_folder, 'data/scores.csv'))
474
+
475
  if space == 'w' and method == 'GANSpace':
476
  print('Now obtaining separation vector for using GANSpace')
477
  separation_vectors = disentanglemnet_exp.GANSpace_separation_vectors(100)
478
+ for s in range(30):
479
  print('Generating images with variations')
480
  seed = random.randint(0,100000)
481
+ for i in range(100):
482
+ for eps in kwargs['max_lambda']:
483
+ disentanglemnet_exp.generate_changes(seed, separation_vectors[i], min_epsilon=-eps, max_epsilon=eps, savefig=True, feature=color, method=method)
484
+
485
+ score = None
486
+ scores.append([space, method, color, score, '100', ', '.join(list(separation_vectors[i].astype(str)))])
487
  else:
488
  print('Skipping', method, 'on space', space)
489
  continue
490
 
491
 
492
 
493
+ score_df = pd.DataFrame(scores, columns=['space', 'method', 'color', 'score', 'kwargs', 'vector'])
494
  print(score_df)
495
  score_df.to_csv(join(repo_folder, 'data/scores.csv'))
496