Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pickle | |
import pandas as pd | |
import numpy as np | |
import random | |
import torch | |
from matplotlib.backends.backend_agg import RendererAgg | |
from backend.disentangle_concepts import * | |
import torch_utils | |
import dnnlib | |
import legacy | |
_lock = RendererAgg.lock | |
st.set_page_config(layout='wide') | |
BACKGROUND_COLOR = '#bcd0e7' | |
SECONDARY_COLOR = '#bce7db' | |
st.title('Disentanglement studies on the Textile Dataset') | |
st.markdown( | |
""" | |
This is a demo of the Disentanglement studies on the [iMET Textiles Dataset](https://www.metmuseum.org/art/collection/search/85531). | |
""", | |
unsafe_allow_html=False,) | |
annotations_file = './data/textile_annotated_files/seeds0000-100000_S.pkl' | |
with open(annotations_file, 'rb') as f: | |
annotations = pickle.load(f) | |
concept_vectors = pd.read_csv('./data/stored_vectors/scores_colors_hsv.csv') | |
concept_vectors['vector'] = [np.array([float(xx) for xx in x]) for x in concept_vectors['vector'].str.split(', ')] | |
concept_vectors['score'] = concept_vectors['score'].astype(float) | |
concept_vectors['sign'] = [True if 'sign:True' in val else False for val in concept_vectors['kwargs']] | |
concept_vectors['extremes'] = [True if 'extremes method:True' in val else False for val in concept_vectors['kwargs']] | |
concept_vectors['regularization'] = [float(val.split(',')[1].strip('regularization: ')) if 'regularization:' in val else False for val in concept_vectors['kwargs']] | |
concept_vectors['cl_method'] = [val.split(',')[0].strip('classification method:') if 'classification method:' in val else False for val in concept_vectors['kwargs']] | |
concept_vectors['num_factors'] = [int(val.split(',')[1].strip('number of factors:')) if 'number of factors:' in val else False for val in concept_vectors['kwargs']] | |
concept_vectors = concept_vectors.sort_values('score', ascending=False).reset_index() | |
with dnnlib.util.open_url('./data/textile_model_files/network-snapshot-005000.pkl') as f: | |
model = legacy.load_network_pkl(f)['G_ema'].to('cpu') # type: ignore | |
COLORS_LIST = ['Gray', 'Red Orange', 'Yellow', 'Green', 'Light Blue', 'Blue', 'Purple', 'Pink', 'Saturation', 'Value'] | |
COLORS_NEGATIVE = COLORS_LIST + ['None'] | |
if 'image_id' not in st.session_state: | |
st.session_state.image_id = 52921 | |
if 'colors' not in st.session_state: | |
st.session_state.colors = [COLORS_LIST[0]] | |
if 'non_colors' not in st.session_state: | |
st.session_state.non_colors = ['None'] | |
if 'space_id' not in st.session_state: | |
st.session_state.space_id = 'W' | |
if 'color_lambda' not in st.session_state: | |
st.session_state.color_lambda = 7 | |
if 'saturation_lambda' not in st.session_state: | |
st.session_state.saturation_lambda = 0 | |
if 'value_lambda' not in st.session_state: | |
st.session_state.value_lambda = 0 | |
if 'sign' not in st.session_state: | |
st.session_state.sign = False | |
if 'extremes' not in st.session_state: | |
st.session_state.extremes = False | |
if 'regularization' not in st.session_state: | |
st.session_state.regularization = False | |
if 'cl_method' not in st.session_state: | |
st.session_state.cl_method = False | |
if 'num_factors' not in st.session_state: | |
st.session_state.num_factors = False | |
if 'best' not in st.session_state: | |
st.session_state.best = True | |
# def on_change_random_input(): | |
# st.session_state.image_id = st.session_state.image_id | |
# ----------------------------- INPUT ---------------------------------- | |
epsilon_container = st.empty() | |
st.header('Image Manipulation with Vector Algebra') | |
header_col_1, header_col_2, header_col_3, header_col_4 = st.columns([1,2,2,1]) | |
input_col_1, output_col_2, output_col_3, input_col_4 = st.columns([1,2,2,1]) | |
# --------------------------- INPUT column 1 --------------------------- | |
with input_col_1: | |
with st.form('image_form'): | |
# image_id = st.number_input('Image ID: ', format='%d', step=1) | |
st.write('**Choose or generate a random image to test the disentanglement**') | |
chosen_image_id_input = st.empty() | |
image_id = chosen_image_id_input.number_input('Image ID:', format='%d', step=1, value=st.session_state.image_id) | |
choose_image_button = st.form_submit_button('Choose the defined image') | |
random_id = st.form_submit_button('Generate a random image') | |
if random_id: | |
image_id = random.randint(0, 100000) | |
st.session_state.image_id = image_id | |
chosen_image_id_input.number_input('Image ID:', format='%d', step=1, value=st.session_state.image_id) | |
if choose_image_button: | |
image_id = int(image_id) | |
st.session_state.image_id = image_id | |
with header_col_1: | |
st.write('Input image selection') | |
if st.session_state.space_id == 'Z': | |
original_image_vec = annotations['z_vectors'][st.session_state.image_id] | |
else: | |
original_image_vec = annotations['w_vectors'][st.session_state.image_id] | |
img = generate_original_image(original_image_vec, model, latent_space=st.session_state.space_id) | |
with output_col_2: | |
st.image(img) | |
with header_col_2: | |
st.write('Original image') | |
with input_col_4: | |
with st.form('text_form_1'): | |
st.write('**Positive colors to vary (including Saturation and Value)**') | |
colors = st.multiselect('Color:', tuple(COLORS_LIST), default=[COLORS_LIST[0], COLORS_LIST[1]]) | |
colors_button = st.form_submit_button('Choose the defined colors') | |
st.session_state.image_id = image_id | |
st.session_state.colors = colors | |
st.session_state.color_lambda = [5]*len(colors) | |
st.session_state.non_colors = ['None']*len(colors) | |
lambdas = [] | |
negative_cols = [] | |
for color in colors: | |
st.write(color) | |
st.write('**Set range of change**') | |
chosen_color_lambda_input = st.empty() | |
color_lambda = chosen_color_lambda_input.number_input('Lambda:', min_value=-100, step=1, value=5, key=color+'_number') | |
lambdas.append(color_lambda) | |
st.write('**Set dimensions of change to not consider**') | |
chosen_color_negative_input = st.empty() | |
color_negative = chosen_color_negative_input.selectbox('Color:', tuple(COLORS_NEGATIVE), index=len(COLORS_NEGATIVE)-1, key=color+'_noncolor') | |
negative_cols.append(color_negative) | |
lambdas_button = st.form_submit_button('Submit options') | |
if lambdas_button: | |
st.session_state.color_lambda = lambdas | |
st.session_state.non_colors = negative_cols | |
# print(st.session_state.colors) | |
# print(st.session_state.color_lambda) | |
# print(st.session_state.non_colors) | |
# ---------------------------- DISPLAY COL 1 ROW 1 ------------------------------ | |
with header_col_3: | |
separation_vectors = [] | |
for col in st.session_state.colors: | |
separation_vector, score_1 = concept_vectors[concept_vectors['color'] == col].reset_index().loc[0, ['vector', 'score']] | |
separation_vectors.append(separation_vector) | |
negative_separation_vectors = [] | |
for non_col in st.session_state.non_colors: | |
if non_col != 'None': | |
negative_separation_vector, score_2 = concept_vectors[concept_vectors['color'] == non_col].reset_index().loc[0, ['vector', 'score']] | |
negative_separation_vectors.append(negative_separation_vector) | |
else: | |
negative_separation_vectors.append('None') | |
## n1 − (n1T n2)n2 | |
# print(negative_separation_vectors, separation_vectors) | |
st.write(f'Output Image, with positive {str(st.session_state.colors)}, and negative {str(st.session_state.non_colors)}') | |
# ---------------------------- DISPLAY COL 2 ROW 1 ------------------------------ | |
with output_col_3: | |
image_updated = generate_composite_images(model, original_image_vec, separation_vectors, lambdas=st.session_state.color_lambda, negative_colors=negative_separation_vectors) | |
st.image(image_updated) | |