Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pickle | |
import pandas as pd | |
import numpy as np | |
import random | |
import torch | |
from matplotlib.backends.backend_agg import RendererAgg | |
from backend.disentangle_concepts import * | |
import torch_utils | |
import dnnlib | |
import legacy | |
_lock = RendererAgg.lock | |
st.set_page_config(layout='wide') | |
BACKGROUND_COLOR = '#bcd0e7' | |
SECONDARY_COLOR = '#bce7db' | |
st.title('Disentanglement on Textile Datasets') | |
st.markdown( | |
""" | |
This is a demo of the Disentanglement experiment on the [iMET Textiles Dataset](https://www.metmuseum.org/art/collection/search/85531). | |
In this page, the user can adjust the colors of textile images generated by an AI by simply traversing the latent space of the AI. | |
The colors can be adjusted following the human-intuitive encoding of HSV, adjusting the main Hue of the image with an option of 7 colors + Gray, | |
the saturation (the amount of Gray) and the value of the image (the amount of Black). | |
""", | |
unsafe_allow_html=False,) | |
annotations_file = './data/textile_annotated_files/seeds0000-100000_S.pkl' | |
with open(annotations_file, 'rb') as f: | |
annotations = pickle.load(f) | |
concept_vectors = pd.read_csv('./data/stored_vectors/scores_colors_hsv.csv') | |
concept_vectors['vector'] = [np.array([float(xx) for xx in x]) for x in concept_vectors['vector'].str.split(', ')] | |
concept_vectors['score'] = concept_vectors['score'].astype(float) | |
concept_vectors['sign'] = [True if 'sign:True' in val else False for val in concept_vectors['kwargs']] | |
concept_vectors['extremes'] = [True if 'extremes method:True' in val else False for val in concept_vectors['kwargs']] | |
concept_vectors['regularization'] = [float(val.split(',')[1].strip('regularization: ')) if 'regularization:' in val else False for val in concept_vectors['kwargs']] | |
concept_vectors['cl_method'] = [val.split(',')[0].strip('classification method:') if 'classification method:' in val else False for val in concept_vectors['kwargs']] | |
concept_vectors['num_factors'] = [int(val.split(',')[1].strip('number of factors:')) if 'number of factors:' in val else False for val in concept_vectors['kwargs']] | |
concept_vectors = concept_vectors.sort_values('score', ascending=False).reset_index() | |
with dnnlib.util.open_url('./data/textile_model_files/network-snapshot-005000.pkl') as f: | |
model = legacy.load_network_pkl(f)['G_ema'].to('cpu') # type: ignore | |
COLORS_LIST = ['Gray', 'Red Orange', 'Yellow', 'Green', 'Light Blue', 'Blue', 'Purple', 'Pink'] | |
if 'image_id' not in st.session_state: | |
st.session_state.image_id = 52921 | |
if 'color_ids' not in st.session_state: | |
st.session_state.concept_ids = COLORS_LIST[-1] | |
if 'space_id' not in st.session_state: | |
st.session_state.space_id = 'W' | |
if 'color_lambda' not in st.session_state: | |
st.session_state.color_lambda = 7 | |
if 'saturation_lambda' not in st.session_state: | |
st.session_state.saturation_lambda = 0 | |
if 'value_lambda' not in st.session_state: | |
st.session_state.value_lambda = 0 | |
if 'sign' not in st.session_state: | |
st.session_state.sign = False | |
if 'extremes' not in st.session_state: | |
st.session_state.extremes = False | |
if 'regularization' not in st.session_state: | |
st.session_state.regularization = False | |
if 'cl_method' not in st.session_state: | |
st.session_state.cl_method = False | |
if 'num_factors' not in st.session_state: | |
st.session_state.num_factors = False | |
if 'best' not in st.session_state: | |
st.session_state.best = True | |
# ----------------------------- INPUT ---------------------------------- | |
st.header('Input') | |
input_col_1, input_col_2, input_col_3, input_col_4 = st.columns(4) | |
# --------------------------- INPUT column 1 --------------------------- | |
with input_col_1: | |
with st.form('image_form'): | |
st.write('**Choose or generate a random base image**') | |
chosen_image_id_input = st.empty() | |
image_id = chosen_image_id_input.number_input('Image ID:', format='%d', step=1, value=st.session_state.image_id) | |
choose_image_button = st.form_submit_button('Choose the defined image') | |
random_id = st.form_submit_button('Generate a random image') | |
if random_id: | |
image_id = random.randint(0, 100000) | |
st.session_state.image_id = image_id | |
chosen_image_id_input.number_input('Image ID:', format='%d', step=1, value=st.session_state.image_id) | |
if choose_image_button: | |
image_id = int(image_id) | |
st.session_state.image_id = image_id | |
with input_col_2: | |
with st.form('text_form_1'): | |
st.write('**Choose hue to vary**') | |
type_col = st.selectbox('Hue:', tuple(COLORS_LIST), index=7) | |
st.write('**Set range of change**') | |
chosen_color_lambda_input = st.empty() | |
color_lambda = chosen_color_lambda_input.number_input('Lambda:', min_value=-100, step=1, value=7) | |
color_lambda_button = st.form_submit_button('Choose the defined hue and lambda') | |
if color_lambda_button: | |
st.session_state.image_id = image_id | |
st.session_state.concept_ids = type_col | |
st.session_state.color_lambda = color_lambda | |
with input_col_3: | |
with st.form('text_form'): | |
st.write('**Choose saturation variation**') | |
chosen_saturation_lambda_input = st.empty() | |
saturation_lambda = chosen_saturation_lambda_input.number_input('Lambda:', min_value=-100, step=1, key=0, value=0) | |
st.write('**Choose value variation**') | |
chosen_value_lambda_input = st.empty() | |
value_lambda = chosen_value_lambda_input.number_input('Lambda:', min_value=-100, step=1, key=1, value=0) | |
value_lambda_button = st.form_submit_button('Choose the defined lambda for value and saturation') | |
if value_lambda_button: | |
st.session_state.saturation_lambda = int(saturation_lambda) | |
st.session_state.value_lambda = int(value_lambda) | |
with input_col_4: | |
with st.form('text_form_2'): | |
st.write('Use the best vectors (after hyperparameter tuning)') | |
best = st.selectbox('Option:', tuple([True, False]), index=0) | |
sign = True | |
num_factors=10 | |
cl_method='LR' | |
regularization=0.1 | |
extremes=True | |
if st.session_state.best is False: | |
st.write('Options for StyleSpace (not available for Saturation and Value)') | |
sign = st.selectbox('Sign option:', tuple([True, False]), index=1) | |
num_factors = st.selectbox('Number of factors option:', tuple([1, 5, 10, 20, False]), index=4) | |
st.write('Options for InterFaceGAN (not available for Saturation and Value)') | |
cl_method = st.selectbox('Classification method option:', tuple(['LR', 'SVM', False]), index=2) | |
regularization = st.selectbox('Regularization option:', tuple([0.1, 1.0, False]), index=2) | |
st.write('Options for InterFaceGAN (only for Saturation and Value)') | |
extremes = st.selectbox('Extremes option:', tuple([True, False]), index=1) | |
choose_options_button = st.form_submit_button('Choose the defined options') | |
if choose_options_button: | |
st.session_state.best = best | |
if st.session_state.best is False: | |
st.session_state.sign = sign | |
st.session_state.num_factors = num_factors | |
st.session_state.cl_method = cl_method | |
st.session_state.regularization = regularization | |
st.session_state.extremes = extremes | |
# with input_col_4: | |
# with st.form('Network specifics:'): | |
# st.write('**Choose a latent space to use**') | |
# space_id = st.selectbox('Space:', tuple(['W'])) | |
# choose_text_button = st.form_submit_button('Choose the defined concept and space to disentangle') | |
# st.write('**Select hierarchical levels to manipulate**') | |
# layers = st.multiselect('Layers:', tuple(range(14))) | |
# if len(layers) == 0: | |
# layers = None | |
# print(layers) | |
# layers_button = st.form_submit_button('Choose the defined layers') | |
# ---------------------------- SET UP OUTPUT ------------------------------ | |
epsilon_container = st.empty() | |
st.header('Image Manipulation') | |
st.write('Using selected vectors to modify the original image...') | |
header_col_1, header_col_2 = st.columns([1,1]) | |
output_col_1, output_col_2 = st.columns([1,1]) | |
# # prediction error container | |
# error_container = st.empty() | |
# smoothgrad_header_container = st.empty() | |
# # smoothgrad container | |
# smooth_head_1, smooth_head_2, = st.columns([1,1,]) | |
# smoothgrad_col_1, smoothgrad_col_2 = st.columns([1,1]) | |
# ---------------------------- DISPLAY COL 1 ROW 1 ------------------------------ | |
with header_col_1: | |
st.write(f'### Original image') | |
with header_col_2: | |
if st.session_state.best: | |
color_separation_vector, performance_color = concept_vectors[concept_vectors['color'] == st.session_state.concept_ids].reset_index().loc[0, ['vector', 'score']] | |
saturation_separation_vector, performance_saturation = concept_vectors[concept_vectors['color'] == 'Saturation'].reset_index().loc[0, ['vector', 'score']] | |
value_separation_vector, performance_value = concept_vectors[concept_vectors['color'] == 'Value'].reset_index().loc[0, ['vector', 'score']] | |
else: | |
tmp = concept_vectors[concept_vectors['color'] == st.session_state.concept_ids] | |
tmp = tmp[tmp['sign'] == st.session_state.sign][tmp['num_factors'] == st.session_state.num_factors][tmp['cl_method'] == st.session_state.cl_method][tmp['regularization'] == st.session_state.regularization] | |
color_separation_vector, performance_color = tmp.reset_index().loc[0, ['vector', 'score']] | |
tmp_value = concept_vectors[concept_vectors['color'] == 'Value'][concept_vectors['extremes'] == st.session_state.extremes] | |
value_separation_vector, performance_value = tmp_value.reset_index().loc[0, ['vector', 'score']] | |
tmp_sat = concept_vectors[concept_vectors['color'] == 'Saturation'][concept_vectors['extremes'] == st.session_state.extremes] | |
saturation_separation_vector, performance_saturation = tmp_sat.reset_index().loc[0, ['vector', 'score']] | |
st.write('### Modified image') | |
st.write(f""" | |
Change in hue: {st.session_state.concept_ids} of amount: {np.round(st.session_state.color_lambda, 2)}, | |
in: saturation of amount: {np.round(st.session_state.saturation_lambda, 2)}, | |
in: value of amount: {np.round(st.session_state.value_lambda, 2)}.\ | |
Verification performance of hue vector: {performance_color}, | |
saturation vector: {performance_saturation/100}, | |
value vector: {performance_value/100}""") | |
# ---------------------------- DISPLAY COL 2 ROW 1 ------------------------------ | |
if st.session_state.space_id == 'Z': | |
original_image_vec = annotations['z_vectors'][st.session_state.image_id] | |
else: | |
original_image_vec = annotations['w_vectors'][st.session_state.image_id] | |
img = generate_original_image(original_image_vec, model, latent_space=st.session_state.space_id) | |
with output_col_1: | |
st.image(img) | |
with output_col_2: | |
image_updated = generate_composite_images(model, original_image_vec, [color_separation_vector, saturation_separation_vector, value_separation_vector], lambdas=[st.session_state.color_lambda, st.session_state.saturation_lambda, st.session_state.value_lambda]) | |
st.image(image_updated) | |