Spaces:
Runtime error
Runtime error
import streamlit as st | |
import streamlit.components.v1 as components | |
import dnnlib | |
import legacy | |
import pickle | |
import pandas as pd | |
import numpy as np | |
from pyvis.network import Network | |
import random | |
from sklearn.metrics.pairwise import cosine_similarity | |
from matplotlib.backends.backend_agg import RendererAgg | |
from backend.disentangle_concepts import * | |
_lock = RendererAgg.lock | |
HIGHTLIGHT_COLOR = '#e7bcc5' | |
st.set_page_config(layout='wide') | |
st.title('Comparison among color directions') | |
st.write('> **How do the color directions relate to each other?**') | |
st.write(""" | |
This page provides a simple network-based framework to inspect the vector similarity (cosine similarity) among the found color vectors. | |
The nodes are the colors chosen for comparison and the strength of the edge represents the similarity. | |
""") | |
annotations_file = './data/textile_annotated_files/seeds0000-100000_S.pkl' | |
with open(annotations_file, 'rb') as f: | |
annotations = pickle.load(f) | |
concept_vectors = pd.read_csv('./data/stored_vectors/scores_colors_hsv.csv') | |
concept_vectors['vector'] = [np.array([float(xx) for xx in x]) for x in concept_vectors['vector'].str.split(', ')] | |
concept_vectors['score'] = concept_vectors['score'].astype(float) | |
concept_vectors['sign'] = [True if 'sign:True' in val else False for val in concept_vectors['kwargs']] | |
concept_vectors['extremes'] = [True if 'extremes method:True' in val else False for val in concept_vectors['kwargs']] | |
concept_vectors['regularization'] = [float(val.split(',')[1].strip('regularization: ')) if 'regularization:' in val else False for val in concept_vectors['kwargs']] | |
concept_vectors['cl_method'] = [val.split(',')[0].strip('classification method:') if 'classification method:' in val else False for val in concept_vectors['kwargs']] | |
concept_vectors['num_factors'] = [int(val.split(',')[1].strip('number of factors:')) if 'number of factors:' in val else False for val in concept_vectors['kwargs']] | |
concept_vectors = concept_vectors.sort_values('score', ascending=False).reset_index() | |
with dnnlib.util.open_url('./data/textile_model_files/network-snapshot-005000.pkl') as f: | |
model = legacy.load_network_pkl(f)['G_ema'].to('cpu') # type: ignore | |
COLORS_LIST = ['Gray', 'Red Orange', 'Yellow', 'Green', 'Light Blue', 'Blue', 'Purple', 'Pink', 'Saturation', 'Value'] | |
if 'concept_ids' not in st.session_state: | |
st.session_state.concept_ids = COLORS_LIST | |
if 'sign' not in st.session_state: | |
st.session_state.sign = False | |
if 'extremes' not in st.session_state: | |
st.session_state.extremes = False | |
if 'regularization' not in st.session_state: | |
st.session_state.regularization = False | |
if 'cl_method' not in st.session_state: | |
st.session_state.cl_method = False | |
if 'num_factors' not in st.session_state: | |
st.session_state.num_factors = False | |
if 'best' not in st.session_state: | |
st.session_state.best = True | |
# ----------------------------- INPUT ---------------------------------- | |
st.header('Input') | |
input_col_1, input_col_2 = st.columns([1,1]) | |
# --------------------------- INPUT column 1 --------------------------- | |
with input_col_1: | |
with st.form('text_form'): | |
# image_id = st.number_input('Image ID: ', format='%d', step=1) | |
st.write('**Choose a series of colors to compare**') | |
# chosen_text_id_input = st.empty() | |
# concept_id = chosen_text_id_input.text_input('Concept:', value=st.session_state.concept_id) | |
concept_ids = st.multiselect('Color (including Saturation and Value):', tuple(COLORS_LIST), default=COLORS_LIST) | |
choose_text_button = st.form_submit_button('Choose the defined colors') | |
if choose_text_button: | |
st.session_state.concept_ids = list(concept_ids) | |
with input_col_2: | |
with st.form('text_form_1'): | |
st.write('Use the best vectors (after hyperparameter tuning)') | |
best = st.selectbox('Option:', tuple([True, False]), index=0) | |
sign = True | |
num_factors=10 | |
cl_method='LR' | |
regularization=0.1 | |
extremes=True | |
if st.session_state.best is False: | |
st.write('Options for StyleSpace (not available for Saturation and Value)') | |
sign = st.selectbox('Sign option:', tuple([True, False]), index=1) | |
num_factors = st.selectbox('Number of factors option:', tuple([1, 5, 10, 20, False]), index=4) | |
st.write('Options for InterFaceGAN (not available for Saturation and Value)') | |
cl_method = st.selectbox('Classification method option:', tuple(['LR', 'SVM', False]), index=2) | |
regularization = st.selectbox('Regularization option:', tuple([0.1, 1.0, False]), index=2) | |
st.write('Options for InterFaceGAN (only for Saturation and Value)') | |
extremes = st.selectbox('Extremes option:', tuple([True, False]), index=1) | |
choose_options_button = st.form_submit_button('Choose the defined options') | |
if choose_options_button: | |
st.session_state.best = best | |
if st.session_state.best is False: | |
st.session_state.sign = sign | |
st.session_state.num_factors = num_factors | |
st.session_state.cl_method = cl_method | |
st.session_state.regularization = regularization | |
st.session_state.extremes = extremes | |
# ---------------------------- SET UP OUTPUT ------------------------------ | |
epsilon_container = st.empty() | |
st.header('Comparison') | |
st.subheader('Color vectors') | |
header_col_1, header_col_2 = st.columns([3,1]) | |
output_col_1, output_col_2 = st.columns([3,1]) | |
# ---------------------------- DISPLAY COL 1 ROW 1 ------------------------------ | |
if st.session_state.best: | |
tmp = concept_vectors[concept_vectors['color'].isin(st.session_state.concept_ids)].groupby('color').first().reset_index() | |
else: | |
tmp = concept_vectors[concept_vectors['color'].isin(st.session_state.concept_ids)] | |
tmp = tmp[tmp['sign'] == st.session_state.sign][tmp['extremes'] == st.session_state.extremes][tmp['num_factors'] == st.session_state.num_factors][tmp['cl_method'] == st.session_state.cl_method][tmp['regularization'] == st.session_state.regularization] | |
info = tmp.loc[:, ['vector', 'score', 'color', 'kwargs']].values | |
concept_ids = [i[2] for i in info] #+ ' ' + i[3] | |
with header_col_1: | |
st.write('### Similarity graph') | |
with header_col_2: | |
st.write('### Information') | |
with output_col_2: | |
for i,concept_id in enumerate(concept_ids): | |
st.write(f'''Color: {info[i][2]}.\ | |
Settings: {info[i][3]}\ | |
''') | |
with output_col_1: | |
edges = [] | |
for i in range(len(concept_ids)): | |
for j in range(len(concept_ids)): | |
if i != j and info[i][2] != info[j][2]: | |
print(f'Similarity between {concept_ids[i]} and {concept_ids[j]}') | |
similarity = cosine_similarity(info[i][0].reshape(1, -1), info[j][0].reshape(1, -1)) | |
print(np.round(similarity[0][0], 3)) | |
edges.append((concept_ids[i], concept_ids[j], np.round(similarity[0][0] + 0.001, 3))) | |
net = Network(height="750px", width="100%",) | |
for e in edges: | |
src = e[0] | |
dst = e[1] | |
w = e[2] | |
net.add_node(src, src, title=src) | |
net.add_node(dst, dst, title=dst) | |
net.add_edge(src, dst, value=w, title=src + ' to ' + dst + ' similarity ' +str(w)) | |
# Generate network with specific layout settings | |
net.repulsion( | |
node_distance=420, | |
central_gravity=0.33, | |
spring_length=110, | |
spring_strength=0.10, | |
damping=0.95 | |
) | |
# Save and read graph as HTML file (on Streamlit Sharing) | |
try: | |
path = '/tmp' | |
net.save_graph(f'{path}/pyvis_graph.html') | |
HtmlFile = open(f'{path}/pyvis_graph.html', 'r', encoding='utf-8') | |
# Save and read graph as HTML file (locally) | |
except: | |
path = '/html_files' | |
net.save_graph(f'{path}/pyvis_graph.html') | |
HtmlFile = open(f'{path}/pyvis_graph.html', 'r', encoding='utf-8') | |
# Load HTML file in HTML component for display on Streamlit page | |
components.html(HtmlFile.read(), height=435) | |