latent-space-theories / DisentanglementBase.py
ludusc's picture
lots of changes
2cafca2
raw
history blame
35.8 kB
#!/usr/bin/env python
import numpy as np
import pandas as pd
from sklearn.svm import SVC
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression, LinearRegression
from sklearn.model_selection import train_test_split
from tqdm import tqdm
import random
from os.path import join
import os
import pickle
import torch
import matplotlib.pyplot as plt
import PIL
from PIL import Image, ImageColor
import sys
sys.path.append('backend')
from color_annotations import extract_color
from networks_stylegan3 import *
sys.path.append('.')
import dnnlib
import legacy
def hex2rgb(hex_value):
h = hex_value.strip("#")
rgb = tuple(int(h[i:i+2], 16) for i in (0, 2, 4))
return rgb
def rgb2hsv(r, g, b):
# Normalize R, G, B values
r, g, b = r / 255.0, g / 255.0, b / 255.0
# h, s, v = hue, saturation, value
max_rgb = max(r, g, b)
min_rgb = min(r, g, b)
difference = max_rgb-min_rgb
# if max_rgb and max_rgb are equal then h = 0
if max_rgb == min_rgb:
h = 0
# if max_rgb==r then h is computed as follows
elif max_rgb == r:
h = (60 * ((g - b) / difference) + 360) % 360
# if max_rgb==g then compute h as follows
elif max_rgb == g:
h = (60 * ((b - r) / difference) + 120) % 360
# if max_rgb=b then compute h
elif max_rgb == b:
h = (60 * ((r - g) / difference) + 240) % 360
# if max_rgb==zero then s=0
if max_rgb == 0:
s = 0
else:
s = (difference / max_rgb) * 100
# compute v
v = max_rgb * 100
# return rounded values of H, S and V
return tuple(map(round, (h, s, v)))
class DisentanglementBase:
def __init__(self, repo_folder, model, annotations, df, space, colors_list, compute_s=False, variable='H1', categorical=True):
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Using device', self.device)
self.repo_folder = repo_folder
self.model = model.to(self.device)
self.annotations = annotations
self.df = df
self.space = space
self.categorical = categorical
self.variable = variable
self.layers = ['input', 'L0_36_512', 'L1_36_512', 'L2_36_512', 'L3_52_512',
'L4_52_512', 'L5_84_512', 'L6_84_512', 'L7_148_512', 'L8_148_512',
'L9_148_362', 'L10_276_256', 'L11_276_181', 'L12_276_128',
'L13_256_128', 'L14_256_3']
self.layers_shapes = [4, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 362, 256, 181, 128, 128]
self.decoding_layers = 16
self.colors_list = colors_list
self.to_hsv()
if compute_s:
self.get_s_space()
def to_hsv(self):
"""
The tohsv function takes the top 3 colors of each image and converts them to HSV values.
It then adds these values as new columns in the dataframe.
:param self: Allow the function to access the dataframe
:return: The dataframe with the new columns added
:doc-author: Trelent
"""
print('Adding HSV encoding')
self.df['H1'] = self.df['top1col'].map(lambda x: rgb2hsv(*hex2rgb(x))[0])
self.df['H2'] = self.df['top2col'].map(lambda x: rgb2hsv(*hex2rgb(x))[0])
self.df['H3'] = self.df['top3col'].map(lambda x: rgb2hsv(*hex2rgb(x))[0])
self.df['S1'] = self.df['top1col'].map(lambda x: rgb2hsv(*hex2rgb(x))[1])
self.df['S2'] = self.df['top2col'].map(lambda x: rgb2hsv(*hex2rgb(x))[1])
self.df['S3'] = self.df['top3col'].map(lambda x: rgb2hsv(*hex2rgb(x))[1])
self.df['V1'] = self.df['top1col'].map(lambda x: rgb2hsv(*hex2rgb(x))[2])
self.df['V2'] = self.df['top2col'].map(lambda x: rgb2hsv(*hex2rgb(x))[2])
self.df['V3'] = self.df['top3col'].map(lambda x: rgb2hsv(*hex2rgb(x))[2])
print('Adding RGB encoding')
self.df['R1'] = self.df['top1col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[0])
self.df['R2'] = self.df['top2col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[0])
self.df['R3'] = self.df['top3col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[0])
self.df['G1'] = self.df['top1col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[1])
self.df['G2'] = self.df['top2col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[1])
self.df['G3'] = self.df['top3col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[1])
self.df['B1'] = self.df['top1col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[2])
self.df['B2'] = self.df['top2col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[2])
self.df['B3'] = self.df['top3col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[2])
def get_s_space(self):
"""
The get_s_space function takes the w_vectors from the annotations dictionary and uses them to generate s_vectors.
The s_space is a space of vectors that are generated by passing each w vector through each layer of the model.
This allows us to see how much information about a particular class is contained in different layers.
:param self: Bind the method to a class
:return: A list of lists of s vectors
:doc-author: Trelent
"""
print('Getting S space from W')
ss = []
for w in tqdm(self.annotations['w_vectors']):
w_torch = torch.from_numpy(w).to(self.device)
W = w_torch.expand((16, -1)).unsqueeze(0)
s = []
for i,layer in enumerate(self.layers):
s.append(getattr(self.model.synthesis, layer).affine(W[0, i].unsqueeze(0)).cpu().numpy())
ss.append(s)
self.annotations['s_vectors'] = ss
annotations_file = join(self.repo_folder, 'data/textile_annotated_files/seeds0000-100000_S.pkl')
print('Storing s for future use here:', annotations_file)
with open(annotations_file, 'wb') as f:
pickle.dump(self.annotations, f)
def get_encoded_latent(self):
# ... (existing code for getX)
if self.space.lower() == 'w':
X = np.array(self.annotations['w_vectors']).reshape((len(self.annotations['w_vectors']), 512))
elif self.space.lower() == 'z':
X = np.array(self.annotations['z_vectors']).reshape((len(self.annotations['z_vectors']), 512))
elif self.space.lower() == 's':
concat_v = []
for i in range(len(self.annotations['w_vectors'])):
concat_v.append(np.concatenate(self.annotations['s_vectors'][i], axis=1))
X = np.array(concat_v)
X = X[:, 0, :]
else:
Exception("Sorry, option not available, select among Z, W, S")
print('Shape embedding:', X.shape)
return X
def get_train_val(self, extremes=False):
X = self.get_encoded_latent()
y = np.array(self.df[self.variable].values)
if self.categorical:
bins = [(x-1) * 360 / (len(self.colors_list) - 1) if x != 1
else 1 for x in range(len(self.colors_list) + 1)]
bins[0] = 0
y_cat = pd.cut(y,
bins=bins,
labels=self.colors_list,
include_lowest=True
)
print(y_cat.value_counts())
x_train, x_val, y_train, y_val = train_test_split(X, y_cat, test_size=0.2)
else:
if extremes:
# Calculate the number of elements to consider (10% of array size)
num_elements = int(0.2 * len(y))
# Get indices of the top num_elements maximum values
top_indices = np.argpartition(array, -num_elements)[-num_elements:]
bottom_indices = np.argpartition(array, -num_elements)[:num_elements]
y_ext = y[top_indices + bottom_indices, :]
X_ext = X[top_indices + bottom_indices, :]
x_train, x_val, y_train, y_val = train_test_split(X_ext, y_ext, test_size=0.2)
else:
x_train, x_val, y_train, y_val = train_test_split(X, y, test_size=0.2)
return x_train, x_val, y_train, y_val
def InterFaceGAN_separation_vector(self, method='LR', C=0.1):
"""
Method from InterfaceGAN
The get_separation_space function takes in a type_bin, annotations, and df.
It then samples 100 of the most representative abstracts for that type_bin and 100 of the least representative abstracts for that type_bin.
It then trains an SVM or logistic regression model on these 200 samples to find a separation space between them.
The function returns this separation space as well as how many nodes are important in this separation space.
:param type_bin: Select the type of abstracts to be used for training
:param annotations: Access the z_vectors
:param df: Get the abstracts that are used for training
:param samples: Determine how many samples to take from the top and bottom of the distribution
:param method: Specify the classifier to use
:param C: Control the regularization strength
:return: The weights of the linear classifier
:doc-author: Trelent
"""
x_train, x_val, y_train, y_val = self.get_train_val()
if self.categorical:
if method == 'SVM':
svc = SVC(gamma='auto', kernel='linear', random_state=0, C=C)
svc.fit(x_train, y_train)
print('Val performance SVM', np.round(svc.score(x_val, y_val), 2))
return svc.coef_ / np.linalg.norm(svc.coef_)
elif method == 'LR':
clf = LogisticRegression(random_state=0, C=C)
clf.fit(x_train, y_train)
print('Val performance logistic regression', np.round(clf.score(x_val, y_val), 2))
return clf.coef_ / np.linalg.norm(clf.coef_)
else:
clf = LinearRegression()
clf.fit(x_train, y_train)
print('Val performance linear regression', np.round(clf.score(x_val, y_val), 2))
return clf.coef_ / np.linalg.norm(clf.coef_)
def get_original_position_latent(self, positive_idxs, negative_idxs):
# ... (existing code for get_original_pos)
separation_vectors = []
for i in range(len(self.colors_list)):
if self.space.lower() == 's':
current_idx = 0
vectors = []
for j, (leng, layer) in enumerate(zip(self.layers_shapes, self.layers)):
arr = np.zeros(leng)
for positive_idx in positive_idxs[i]:
if positive_idx >= current_idx and positive_idx < current_idx + leng:
arr[positive_idx - current_idx] = 1
for negative_idx in negative_idxs[i]:
if negative_idx >= current_idx and negative_idx < current_idx + leng:
arr[negative_idx - current_idx] = 1
arr = arr / (np.linalg.norm(arr) + 0.000001)
vectors.append(arr)
current_idx += leng
elif self.space.lower() == 'z' or self.space.lower() == 'w':
vectors = np.zeros(512)
vectors[positive_idxs[i]] = 1
vectors[negative_idxs[i]] = -1
vectors = vectors / (np.linalg.norm(vectors) + 0.000001)
else:
raise Exception("""This space is not allowed in this function,
select among Z, W, S""")
separation_vectors.append(vectors)
return separation_vectors
def StyleSpace_separation_vector(self, sign=True, num_factors=20, cutout=0.25):
""" Formula from StyleSpace Analysis """
x_train, x_val, y_train, y_val = self.get_train_val()
positive_idxs = []
negative_idxs = []
for color in self.colors_list:
x_col = x_train[np.where(y_train == color)]
mp = np.mean(x_train, axis=0)
sp = np.std(x_train, axis=0)
de = (x_col - mp) / sp
meu = np.mean(de, axis=0)
seu = np.std(de, axis=0)
if sign:
thetau = meu / seu
positive_idx = np.argsort(thetau)[-num_factors//2:]
negative_idx = np.argsort(thetau)[:num_factors//2]
else:
thetau = np.abs(meu) / seu
positive_idx = np.argsort(thetau)[-num_factors:]
negative_idx = []
if cutout:
beyond_cutout = np.where(np.abs(thetau) > cutout)
positive_idx = np.intersect1d(positive_idx, beyond_cutout)
negative_idx = np.intersect1d(negative_idx, beyond_cutout)
if len(positive_idx) == 0 and len(negative_idx) == 0:
print('No values found above the current cutout', cutout, 'for color', color, '.\n Disentangled vector will be all zeros.' )
positive_idxs.append(positive_idx)
negative_idxs.append(negative_idx)
separation_vectors = self.get_original_position_latent(positive_idxs, negative_idxs)
return separation_vectors
def GANSpace_separation_vectors(self, num_components):
x_train, x_val, y_train, y_val = self.get_train_val()
if self.space.lower() == 'w':
pca = PCA(n_components=num_components)
dims_pca = pca.fit_transform(x_train.T)
dims_pca /= np.linalg.norm(dims_pca, axis=0)
return dims_pca
else:
raise("""This space is not allowed in this function,
only W""")
def generate_images(self, seed, separation_vector=None, lambd=0):
"""
The generate_original_image function takes in a latent vector and the model,
and returns an image generated from that latent vector.
:param z: Generate the image
:param model: Generate the image
:return: A pil image
:doc-author: Trelent
"""
G = self.model.to(self.device) # type: ignore
# Labels.
label = torch.zeros([1, G.c_dim], device=self.device)
if self.space.lower() == 'z':
vec = self.annotations['z_vectors'][seed]
Z = torch.from_numpy(vec.copy()).to(self.device)
if separation_vector is not None:
change = torch.from_numpy(separation_vector.copy()).unsqueeze(0).to(self.device)
Z = torch.add(Z, change, alpha=lambd)
img = G(Z, label, truncation_psi=1, noise_mode='const')
elif self.space.lower() == 'w':
vec = self.annotations['w_vectors'][seed]
W = torch.from_numpy(np.repeat(vec, self.decoding_layers, axis=0)
.reshape(1, self.decoding_layers, vec.shape[1]).copy()).to(self.device)
if separation_vector is not None:
change = torch.from_numpy(separation_vector.copy()).unsqueeze(0).to(self.device)
W = torch.add(W, change, alpha=lambd)
img = G.synthesis(W, noise_mode='const')
else:
raise Exception("""This space is not allowed in this function,
select either W or Z or use generate_flexible_images""")
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
return PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB')
def forward_from_style(self, x, styles, layer):
dtype = torch.float16 if (getattr(self.model.synthesis, layer).use_fp16 and self.device=='cuda') else torch.float32
if getattr(self.model.synthesis, layer).is_torgb:
weight_gain = 1 / np.sqrt(getattr(self.model.synthesis, layer).in_channels * (getattr(self.model.synthesis, layer).conv_kernel ** 2))
styles = styles * weight_gain
input_gain = getattr(self.model.synthesis, layer).magnitude_ema.rsqrt().to(dtype)
# Execute modulated conv2d.
x = modulated_conv2d(x=x.to(dtype), w=getattr(self.model.synthesis, layer).weight.to(dtype), s=styles.to(dtype),
padding=getattr(self.model.synthesis, layer).conv_kernel-1,
demodulate=(not getattr(self.model.synthesis, layer).is_torgb),
input_gain=input_gain.to(dtype))
# Execute bias, filtered leaky ReLU, and clamping.
gain = 1 if getattr(self.model.synthesis, layer).is_torgb else np.sqrt(2)
slope = 1 if getattr(self.model.synthesis, layer).is_torgb else 0.2
x = filtered_lrelu.filtered_lrelu(x=x, fu=getattr(self.model.synthesis, layer).up_filter, fd=getattr(self.model.synthesis, layer).down_filter,
b=getattr(self.model.synthesis, layer).bias.to(x.dtype),
up=getattr(self.model.synthesis, layer).up_factor, down=getattr(self.model.synthesis, layer).down_factor,
padding=getattr(self.model.synthesis, layer).padding,
gain=gain, slope=slope, clamp=getattr(self.model.synthesis, layer).conv_clamp)
return x
def generate_flexible_images(self, seed, separation_vector=None, lambd=0):
if self.space.lower() != 's':
raise Exception("""This space is not allowed in this function,
select S or use generate_images""")
vec = self.annotations['w_vectors'][seed]
w_torch = torch.from_numpy(vec).to(self.device)
W = w_torch.expand((self.decoding_layers, -1)).unsqueeze(0)
x = self.model.synthesis.input(W[0,0].unsqueeze(0))
for i, layer in enumerate(self.layers[1:]):
style = getattr(self.model.synthesis, layer).affine(W[0, i].unsqueeze(0))
if separation_vector is not None:
change = torch.from_numpy(separation_vector[i+1].copy()).unsqueeze(0).to(self.device)
style = torch.add(style, change, alpha=lambd)
x = self.forward_from_style(x, style, layer)
if self.model.synthesis.output_scale != 1:
x = x * self.model.synthesis.output_scale
img = (x.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
img = PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB')
return img
def generate_changes(self, seed, separation_vector, min_epsilon=-3, max_epsilon=3, count=5, savefig=True, feature=None, method=None, save_separately=False):
"""
The regenerate_images function takes a model, z, and decision_boundary as input. It then
constructs an inverse rotation/translation matrix and passes it to the generator. The generator
expects this matrix as an inverse to avoid potentially failing numerical operations in the network.
The function then generates images using G(z_0, label) where z_0 is a linear combination of z and the decision boundary.
:param model: Pass in the model to be used for image generation
:param z: Generate the starting point of the line
:param decision_boundary: Generate images along the direction of the decision boundary
:param min_epsilon: Set the minimum value of lambda
:param max_epsilon: Set the maximum distance from the original image to generate
:param count: Determine the number of images that are generated
:return: A list of images and a list of lambdas
:doc-author: Trelent
"""
os.makedirs(join(self.repo_folder, 'figures'), exist_ok=True)
lambdas = np.linspace(min_epsilon, max_epsilon, count)
images = []
# Generate images.
for _, lambd in enumerate(lambdas):
if self.space.lower() == 's':
images.append(self.generate_flexible_images(seed, separation_vector=separation_vector, lambd=lambd))
elif self.space.lower() in ['z', 'w']:
images.append(self.generate_images(seed, separation_vector=separation_vector, lambd=lambd))
if savefig:
fig, axs = plt.subplots(1, len(images), figsize=(90,20))
title = 'Disentanglement method: '+ method + ', on feature: ' + feature + ' on space: ' + self.space + ', image seed: ' + str(seed)
name = '_'.join([method, feature, self.space, str(seed), str(lambdas[-1])])
fig.suptitle(title, fontsize=20)
for i, (image, lambd) in enumerate(zip(images, lambdas)):
axs[i].imshow(image)
axs[i].set_title(np.round(lambd, 2))
plt.tight_layout()
plt.savefig(join(self.repo_folder, 'figures', 'examples', name+'.jpg'))
plt.close()
if save_separately:
for i, (image, lambd) in enumerate(zip(images, lambdas)):
plt.imshow(image)
plt.tight_layout()
plt.savefig(join(self.repo_folder, 'figures', 'examples', name + '_' + str(lambd) + '.jpg'))
plt.close()
return images, lambdas
def get_verification_score(self, separation_vector, feature_id, samples=10, lambd=1, savefig=False, feature=None, method=None):
items = random.sample(range(100000), samples)
if self.categorical:
if feature_id == 0:
hue_low = 0
hue_high = 1
elif feature_id == 1:
hue_low = 1
hue_high = (feature_id - 1) * 360 / (len(self.colors_list) - 1)
else:
hue_low = (feature_id - 1) * 360 / (len(self.colors_list) - 1)
hue_high = feature_id * 360 / (len(self.colors_list) - 1)
matches = 0
for seed in tqdm(items):
images, lambdas = self.generate_changes(seed, separation_vector, min_epsilon=-lambd, max_epsilon=lambd, count=3, savefig=savefig, feature=feature, method=method)
try:
colors_negative = extract_color(images[0], 5, 1, None)
h0, s0, v0 = rgb2hsv(*hex2rgb(colors_negative[0]))
colors_orig = extract_color(images[1], 5, 1, None)
h1, s1, v1 = rgb2hsv(*hex2rgb(colors_orig[0]))
colors_positive = extract_color(images[2], 5, 1, None)
h2, s2, v2 = rgb2hsv(*hex2rgb(colors_positive[0]))
if h1 > hue_low and h1 < hue_high:
samples -= 1
else:
if (h0 > hue_low and h0 < hue_high) or (h2 > hue_low and h2 < hue_high):
matches += 1
except Exception as e:
print(e)
return np.round(matches / samples, 2)
else:
increase = 0
for seed in tqdm(items):
images, lambdas = self.generate_changes(seed, separation_vector, min_epsilon=-lambd,
max_epsilon=lambd, count=3, savefig=savefig,
feature=feature, method=method)
try:
colors_negative = extract_color(images[0], 5, 1, None)
r0, g0, b0 = hex2rgb(colors_negative[0])
h0, s0, v0 = rgb2hsv(*hex2rgb(colors_negative[0]))
colors_orig = extract_color(images[1], 5, 1, None)
r1, g1, b1 = hex2rgb(colors_orig[0])
h1, s1, v1 = rgb2hsv(*hex2rgb(colors_orig[0]))
colors_positive = extract_color(images[2], 5, 1, None)
r2, g2, b2 = hex2rgb(colors_positive[0])
h2, s2, v2 = rgb2hsv(*hex2rgb(colors_positive[0]))
if 's' in self.variable.lower():
increase += max(0, s2 - s1)
elif 'v' in self.variable.lower():
increase += max(0, v2 - v1)
elif 'r' in self.variable.lower():
increase += max(0, r2 - r1)
elif 'g' in self.variable.lower():
increase += max(0, g2 - g1)
elif 'b' in self.variable.lower():
increase += max(0, b2 - b1)
else:
raise('Continous variable not allowed, choose between RGB or SV')
except Exception as e:
print(e)
return np.round(increase / samples, 2)
def continous_experiment(name, var, repo_folder, model, annotations, df, space, colors_list, kwargs):
scores = []
print(f'Launching {name} experiment')
disentanglemnet_exp = DisentanglementBase(repo_folder, model, annotations, df, space=space, colors_list=colors_list, compute_s=False, variable=var, categorical=False)
for extr in kwargs['extremes']:
separation_vector = disentanglemnet_exp.InterFaceGAN_separation_vector()
print(f'Generating images with variations for {name}')
for s in range(30):
seed = random.randint(0,100000)
for eps in kwargs['max_lambda']:
disentanglemnet_exp.generate_changes(seed, separation_vector, min_epsilon=-eps, max_epsilon=eps, savefig=True, feature=name, method= 'InterFaceGAN_' + str(extr))
print('Finally obtaining verification score')
for verif in kwargs['lambda_verif']:
score = disentanglemnet_exp.get_verification_score(separation_vector, 0, samples=kwargs['samples'], lambd=verif, savefig=False, feature=name, method='InterFaceGAN_' + str(extr))
print(f'Score for method InterfaceGAN on {name}:', score)
scores.append([space, 'InterFaceGAN', name, score, 'extremes method:' + str(extr) + 'verification lambda:' + str(verif), ', '.join(list(separation_vector.astype(str)))])
score_df = pd.DataFrame(scores, columns=['space', 'method', 'color', 'score', 'kwargs', 'vector'])
print(score_df)
score_df.to_csv(join(repo_folder, f'data/scores_{name}.csv'))
def main():
repo_folder = '.'
annotations_file = join(repo_folder, 'data/textile_annotated_files/seeds0000-100000_S.pkl')
with open(annotations_file, 'rb') as f:
annotations = pickle.load(f)
df_file = join(repo_folder, 'data/textile_annotated_files/top_three_colours.csv')
df = pd.read_csv(df_file).fillna('#000000')
model_file = join(repo_folder, 'data/textile_model_files/network-snapshot-005000.pkl')
with dnnlib.util.open_url(model_file) as f:
model = legacy.load_network_pkl(f)['G_ema'] # type: ignore
colors_list = ['Red', 'Orange', 'Yellow', 'Yellow Green', 'Chartreuse Green',
'Kelly Green', 'Green Blue Seafoam', 'Cyan Blue',
'Warm Blue', 'Indigo', 'Purple Magenta', 'Magenta Pink']
colors_list = ['Gray', 'Red Orange', 'Yellow', 'Green', 'Light Blue',
'Blue', 'Purple', 'Pink']
scores = []
kwargs = {'CL method':['LR', 'SVM'], 'C':[0.1, 1], 'sign':[True, False],
'num_factors':[1, 5, 10, 20], 'cutout': [None], 'max_lambda':[18, 6],
'samples':30, 'lambda_verif':[14, 7], 'extremes':[True, False]}
continuous = False
specific_examples = [53139, 99376, 16, 99585, 40851, 70, 17703, 44, 52628,
99884, 52921, 46180, 19995, 40920, 554]
if specific_examples is not None:
disentanglemnet_exp = DisentanglementBase(repo_folder, model, annotations, df, space='w', colors_list=colors_list, compute_s=False)
separation_vectors = disentanglemnet_exp.StyleSpace_separation_vector(sign=True, num_factors=10, cutout=None)
# separation_vectors = disentanglemnet_exp.InterFaceGAN_separation_vector(method='LR', C=0.1)
for specific_example in specific_examples:
seed = specific_example
for i, color in enumerate(colors_list):
disentanglemnet_exp.generate_changes(seed, separation_vectors[i], min_epsilon=-9, max_epsilon=9, savefig=True, save_separately=True, feature=color, method='StyleSpace' + '_' + str(True) + '_' + str(10) + '_' + str(None))
return
for space in ['w', ]: #'z', 's'
print('Launching experiment with space:', space)
if continuous:
continous_experiment('Saturation', 'S1', repo_folder, model, annotations, df, space, colors_list, kwargs)
continous_experiment('Value', 'V1', repo_folder, model, annotations, df, space, colors_list, kwargs)
continous_experiment('Red', 'R1', repo_folder, model, annotations, df, space, colors_list, kwargs)
continous_experiment('Green', 'G1', repo_folder, model, annotations, df, space, colors_list, kwargs)
continous_experiment('Blue', 'B1', repo_folder, model, annotations, df, space, colors_list, kwargs)
break
print('Launching Hue experiment')
variable = 'H1'
disentanglemnet_exp = DisentanglementBase(repo_folder, model, annotations, df, space=space, colors_list=colors_list, compute_s=False, variable=variable)
for method in ['StyleSpace', 'InterFaceGAN',]: #'GANSpace'
if space != 's' and method == 'InterFaceGAN':
print('Now obtaining separation vector for using InterfaceGAN')
for met in kwargs['CL method']:
for c in kwargs['C']:
separation_vectors = disentanglemnet_exp.InterFaceGAN_separation_vector(method=met, C=c)
for i, color in enumerate(colors_list):
print(f'Generating images with variations for color {color}')
for s in range(30):
seed = random.randint(0,100000)
for eps in kwargs['max_lambda']:
disentanglemnet_exp.generate_changes(seed, separation_vectors[i], min_epsilon=-eps, max_epsilon=eps, savefig=True, feature=color, method=str(method) + '_' + str(met) + '_' + str(c) + '_' + str(len(colors_list)) + '_' + str(variable))
print('Finally obtaining verification score')
for verif in kwargs['lambda_verif']:
score = disentanglemnet_exp.get_verification_score(separation_vectors[i], i, samples=kwargs['samples'], lambd=verif, savefig=False, feature=color, method=method)
print('Score for method', method, 'on space', space, 'for color', color, ':', score)
scores.append([space, method, color, score, 'classification method:' + met + ', regularization: ' + str(c) + ', verification lambda:' + str(verif), ', '.join(list(separation_vectors[i].astype(str)))])
score_df = pd.DataFrame(scores, columns=['space', 'method', 'color', 'score', 'kwargs', 'vector'])
print(score_df)
score_df.to_csv(join(repo_folder, f'data/scores_InterfaceGAN_{variable}_{len(colors_list)}.csv'))
elif method == 'StyleSpace':
print('Now obtaining separation vector for using StyleSpace')
for sign in kwargs['sign']:
for num_factors in kwargs['num_factors']:
for cutout in kwargs['cutout']:
separation_vectors = disentanglemnet_exp.StyleSpace_separation_vector(sign=sign, num_factors=num_factors, cutout=cutout)
for i, color in enumerate(colors_list):
print(f'Generating images with variations for color {color}')
for s in range(30):
seed = random.randint(0,100000)
for eps in kwargs['max_lambda']:
disentanglemnet_exp.generate_changes(seed, separation_vectors[i], min_epsilon=-eps, max_epsilon=eps, savefig=True, feature=color, method=method + '_' + str(num_factors) + '_' + str(cutout) + '_' + str(sign) + '_' + str(len(colors_list)) + '_' + str(variable))
print('Finally obtaining verification score')
for verif in kwargs['lambda_verif']:
score = disentanglemnet_exp.get_verification_score(separation_vectors[i], i, samples=kwargs['samples'], lambd=verif, savefig=False, feature=color, method=method)
print('Score for method', method, 'on space', space, 'for color', color, ':', score)
scores.append([space, method, color, score, 'using sign:' + str(sign) + ', number of factors: ' + str(num_factors) + ', using cutout: ' + str(cutout) + ', verification lambda:' + str(verif), ', '.join(list(separation_vectors[i].astype(str)))])
score_df = pd.DataFrame(scores, columns=['space', 'method', 'color', 'score', 'kwargs', 'vector'])
print(score_df)
score_df.to_csv(join(repo_folder, f'data/scores_StyleSpace_{variable}_{len(colors_list)}.csv'))
if space == 'w' and method == 'GANSpace':
print('Now obtaining separation vector for using GANSpace')
separation_vectors = disentanglemnet_exp.GANSpace_separation_vectors(100)
print(separation_vectors.shape)
for s in range(30):
print('Generating images with variations')
seed = random.randint(0,100000)
for i in range(100):
for eps in kwargs['max_lambda']:
disentanglemnet_exp.generate_changes(seed, separation_vectors.T[i], min_epsilon=-eps, max_epsilon=eps, savefig=True, feature='dimension_' + str(i), method=method)
score = None
scores.append([space, method, 'PCA', score, '100', ', '.join(list(separation_vectors.T[i].astype(str)))])
else:
print('Skipping', method, 'on space', space)
continue
score_df = pd.DataFrame(scores, columns=['space', 'method', 'color', 'score', 'kwargs', 'vector'])
print(score_df)
score_df.to_csv(join(repo_folder, 'data/scores_{}.csv'.format(pd.to_datetime.now().strftime("%Y-%m-%d_%H%M%S"))))
if __name__ == "__main__":
main()