latent-space-theories / backend /disentangle_concepts.py
ludusc's picture
added new annotations
625d699
raw
history blame
10.8 kB
import numpy as np
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
import torch
from umap import UMAP
import PIL
def get_separation_space(type_bin, annotations, df, samples=200, method='LR', C=0.1, latent_space='Z'):
"""
The get_separation_space function takes in a type_bin, annotations, and df.
It then samples 100 of the most representative abstracts for that type_bin and 100 of the least representative abstracts for that type_bin.
It then trains an SVM or logistic regression model on these 200 samples to find a separation space between them.
The function returns this separation space as well as how many nodes are important in this separation space.
:param type_bin: Select the type of abstracts to be used for training
:param annotations: Access the z_vectors
:param df: Get the abstracts that are used for training
:param samples: Determine how many samples to take from the top and bottom of the distribution
:param method: Specify the classifier to use
:param C: Control the regularization strength
:return: The weights of the linear classifier
:doc-author: Trelent
"""
if latent_space == 'Z':
col = 'z_vectors'
else:
col = 'w_vectors'
abstracts = np.array([float(ann) for ann in df[type_bin]])
abstract_idxs = list(np.argsort(abstracts))[:samples]
repr_idxs = list(np.argsort(abstracts))[-samples:]
X = np.array([annotations[col][i] for i in abstract_idxs+repr_idxs])
X = X.reshape((2*samples, 512))
y = np.array([1]*samples + [0]*samples)
x_train, x_val, y_train, y_val = train_test_split(X, y, test_size=0.2)
if method == 'SVM':
svc = SVC(gamma='auto', kernel='linear', random_state=0, C=C)
svc.fit(x_train, y_train)
print('Val performance SVM', svc.score(x_val, y_val))
imp_features = (np.abs(svc.coef_) > 0.2).sum()
imp_nodes = np.where(np.abs(svc.coef_) > 0.2)[1]
return svc.coef_ / np.linalg.norm(clf.coef_), imp_features, imp_nodes, np.round(clf.score(x_val, y_val),2)
elif method == 'LR':
clf = LogisticRegression(random_state=0, C=C)
clf.fit(x_train, y_train)
print('Val performance logistic regression', clf.score(x_val, y_val))
imp_features = (np.abs(clf.coef_) > 0.15).sum()
imp_nodes = np.where(np.abs(clf.coef_) > 0.15)[1]
return clf.coef_ / np.linalg.norm(clf.coef_), imp_features, imp_nodes, np.round(clf.score(x_val, y_val),2)
def regenerate_images(model, z, decision_boundary, min_epsilon=-3, max_epsilon=3, count=5, latent_space='Z', layers=None):
"""
The regenerate_images function takes a model, z, and decision_boundary as input. It then
constructs an inverse rotation/translation matrix and passes it to the generator. The generator
expects this matrix as an inverse to avoid potentially failing numerical operations in the network.
The function then generates images using G(z_0, label) where z_0 is a linear combination of z and the decision boundary.
:param model: Pass in the model to be used for image generation
:param z: Generate the starting point of the line
:param decision_boundary: Generate images along the direction of the decision boundary
:param min_epsilon: Set the minimum value of lambda
:param max_epsilon: Set the maximum distance from the original image to generate
:param count: Determine the number of images that are generated
:return: A list of images and a list of lambdas
:doc-author: Trelent
"""
device = torch.device('cpu')
G = model.to(device) # type: ignore
if False:
decision_boundary = z - (np.dot(z, decision_boundary.T) / np.dot(decision_boundary, decision_boundary.T)) * decision_boundary
# Labels.
label = torch.zeros([1, G.c_dim], device=device)
z = torch.from_numpy(z.copy()).to(device)
decision_boundary = torch.from_numpy(decision_boundary.copy()).to(device)
lambdas = np.linspace(min_epsilon, max_epsilon, count)
images = []
# Generate images.
for _, lambda_ in enumerate(lambdas):
z_0 = z + lambda_ * decision_boundary
if latent_space == 'Z':
W_0 = G.mapping(z_0, label, truncation_psi=1).to(torch.float32)
W = G.mapping(z, label, truncation_psi=1).to(torch.float32)
print(W.dtype)
else:
W_0 = z_0.expand((14, -1)).unsqueeze(0).to(torch.float32)
W = z.expand((14, -1)).unsqueeze(0).to(torch.float32)
print(W.dtype)
if layers:
W_f = torch.empty_like(W).copy_(W).to(torch.float32)
W_f[:, layers, :] = W_0[:, layers, :]
img = G.synthesis(W_f, noise_mode='const')
else:
img = G.synthesis(W_0, noise_mode='const')
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
images.append(PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB'))
return images, lambdas
def generate_joint_effect(model, z, decision_boundaries, min_epsilon=-3, max_epsilon=3, count=5, latent_space='Z'):
decision_boundary_joint = np.sum(decision_boundaries, axis=0)
print(decision_boundary_joint.shape)
return regenerate_images(model, z, decision_boundary_joint, min_epsilon=min_epsilon, max_epsilon=max_epsilon, count=count, latent_space=latent_space)
def generate_original_image(z, model, latent_space='Z'):
"""
The generate_original_image function takes in a latent vector and the model,
and returns an image generated from that latent vector.
:param z: Generate the image
:param model: Generate the image
:return: A pil image
:doc-author: Trelent
"""
device = torch.device('cpu')
G = model.to(device) # type: ignore
# Labels.
label = torch.zeros([1, G.c_dim], device=device)
if latent_space == 'Z':
z = torch.from_numpy(z.copy()).to(device)
img = G(z, label, truncation_psi=1, noise_mode='const')
else:
W = torch.from_numpy(np.repeat(z, 14, axis=0).reshape(1, 14, z.shape[1]).copy()).to(device)
print(W.shape)
img = G.synthesis(W, noise_mode='const')
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
return PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB')
def get_concepts_vectors(concepts, annotations, df, samples=100, method='LR', C=0.1, latent_space='Z'):
"""
The get_concepts_vectors function takes in a list of concepts, a dictionary of annotations, and the dataframe containing all the images.
It returns two things:
1) A numpy array with shape (len(concepts), 512) where each row is an embedding vector for one concept.
2) A set containing all nodes that are important in this separation space.
:param concepts: Specify the concepts to be used in the analysis
:param annotations: Get the annotations for each concept
:param df: Get the annotations for each concept
:param samples: Determine the number of samples to use in training the logistic regression model
:param method: Choose the method used to train the model
:param C: Control the regularization of the logistic regression
:return: The vectors of the concepts and the nodes that are in common for all concepts
:doc-author: Trelent
"""
important_nodes = []
performances = []
vectors = np.zeros((len(concepts), 512))
for i, conc in enumerate(concepts):
vec, _, imp_nodes, performance = get_separation_space(conc, annotations, df, samples=samples, method=method, C=C, latent_space=latent_space)
vectors[i,:] = vec
performances.append(performance)
important_nodes.append(set(imp_nodes))
# reducer = UMAP(n_neighbors=3, # default 15, The size of local neighborhood (in terms of number of neighboring sample points) used for manifold approximation.
# n_components=3, # default 2, The dimension of the space to embed into.
# min_dist=0.1, # default 0.1, The effective minimum distance between embedded points.
# spread=2.0, # default 1.0, The effective scale of embedded points. In combination with ``min_dist`` this determines how clustered/clumped the embedded points are.
# random_state=0, # default: None, If int, random_state is the seed used by the random number generator;
# )
# projection = reducer.fit_transform(vectors)
nodes_in_common = set.intersection(*important_nodes)
return vectors, nodes_in_common, performances
def get_verification_score(concept, decision_boundary, model, annotations, samples=100, latent_space='Z'):
import open_clip
import os
import random
from tqdm import tqdm
os.environ["CUDA_VISIBLE_DEVICES"] = ""
model_clip, _, preprocess = open_clip.create_model_and_transforms('ViT-L-14', pretrained='laion2b_s32b_b82k')
tokenizer = open_clip.get_tokenizer('ViT-L-14')
# Prepare the text queries
#@markdown _in the form pre_prompt {label}_:
pre_prompt = "Artwork, " #@param {type:"string"}
text_descriptions = [f"{pre_prompt}{label}" for label in [concept]]
text_tokens = tokenizer(text_descriptions)
listlen = len(annotations['fname'])
items = random.sample(range(listlen), samples)
changes = []
for iterator in tqdm(items):
chunk_imgs = []
chunk_ids = []
if latent_space == 'Z':
z = annotations['z_vectors'][iterator]
else:
z = annotations['w_vectors'][iterator]
images, lambdas = regenerate_images(model, z, decision_boundary, min_epsilon=0, max_epsilon=1, count=2, latent_space=latent_space)
for im,l in zip(images, lambdas):
chunk_imgs.append(preprocess(im.convert("RGB")))
chunk_ids.append(l)
image_input = torch.tensor(np.stack(chunk_imgs))
with torch.no_grad(), torch.cuda.amp.autocast():
text_features = model_clip.encode_text(text_tokens).float()
image_features = model_clip.encode_image(image_input).float()
# Rescale features
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
# Analyze featues
text_probs = (100.0 * image_features.cpu().numpy() @ text_features.cpu().numpy().T)#.softmax(dim=-1)
change = max(text_probs[1][0].item() - text_probs[0][0].item(), 0)
changes.append(change)
return np.round(np.mean(np.array(changes)), 4)