Spaces:
Running
Running
# coding: utf-8 | |
from typing import Dict, List, Tuple, Union | |
import torch | |
from torch import nn | |
from torch.cuda.amp.autocast_mode import autocast | |
from trainer.trainer_utils import get_optimizer, get_scheduler | |
from TTS.tts.layers.tacotron.capacitron_layers import CapacitronVAE | |
from TTS.tts.layers.tacotron.gst_layers import GST | |
from TTS.tts.layers.tacotron.tacotron import Decoder, Encoder, PostCBHG | |
from TTS.tts.models.base_tacotron import BaseTacotron | |
from TTS.tts.utils.measures import alignment_diagonal_score | |
from TTS.tts.utils.speakers import SpeakerManager | |
from TTS.tts.utils.text.tokenizer import TTSTokenizer | |
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram | |
from TTS.utils.capacitron_optimizer import CapacitronOptimizer | |
class Tacotron(BaseTacotron): | |
"""Tacotron as in https://arxiv.org/abs/1703.10135 | |
It's an autoregressive encoder-attention-decoder-postnet architecture. | |
Check `TacotronConfig` for the arguments. | |
Args: | |
config (TacotronConfig): Configuration for the Tacotron model. | |
speaker_manager (SpeakerManager): Speaker manager to handle multi-speaker settings. Only use if the model is | |
a multi-speaker model. Defaults to None. | |
""" | |
def __init__( | |
self, | |
config: "TacotronConfig", | |
ap: "AudioProcessor" = None, | |
tokenizer: "TTSTokenizer" = None, | |
speaker_manager: SpeakerManager = None, | |
): | |
super().__init__(config, ap, tokenizer, speaker_manager) | |
# pass all config fields to `self` | |
# for fewer code change | |
for key in config: | |
setattr(self, key, config[key]) | |
# set speaker embedding channel size for determining `in_channels` for the connected layers. | |
# `init_multispeaker` needs to be called once more in training to initialize the speaker embedding layer based | |
# on the number of speakers infered from the dataset. | |
if self.use_speaker_embedding or self.use_d_vector_file: | |
self.init_multispeaker(config) | |
self.decoder_in_features += self.embedded_speaker_dim # add speaker embedding dim | |
if self.use_gst: | |
self.decoder_in_features += self.gst.gst_embedding_dim | |
if self.use_capacitron_vae: | |
self.decoder_in_features += self.capacitron_vae.capacitron_VAE_embedding_dim | |
# embedding layer | |
self.embedding = nn.Embedding(self.num_chars, 256, padding_idx=0) | |
self.embedding.weight.data.normal_(0, 0.3) | |
# base model layers | |
self.encoder = Encoder(self.encoder_in_features) | |
self.decoder = Decoder( | |
self.decoder_in_features, | |
self.decoder_output_dim, | |
self.r, | |
self.memory_size, | |
self.attention_type, | |
self.windowing, | |
self.attention_norm, | |
self.prenet_type, | |
self.prenet_dropout, | |
self.use_forward_attn, | |
self.transition_agent, | |
self.forward_attn_mask, | |
self.location_attn, | |
self.attention_heads, | |
self.separate_stopnet, | |
self.max_decoder_steps, | |
) | |
self.postnet = PostCBHG(self.decoder_output_dim) | |
self.last_linear = nn.Linear(self.postnet.cbhg.gru_features * 2, self.out_channels) | |
# setup prenet dropout | |
self.decoder.prenet.dropout_at_inference = self.prenet_dropout_at_inference | |
# global style token layers | |
if self.gst and self.use_gst: | |
self.gst_layer = GST( | |
num_mel=self.decoder_output_dim, | |
num_heads=self.gst.gst_num_heads, | |
num_style_tokens=self.gst.gst_num_style_tokens, | |
gst_embedding_dim=self.gst.gst_embedding_dim, | |
) | |
# Capacitron layers | |
if self.capacitron_vae and self.use_capacitron_vae: | |
self.capacitron_vae_layer = CapacitronVAE( | |
num_mel=self.decoder_output_dim, | |
encoder_output_dim=self.encoder_in_features, | |
capacitron_VAE_embedding_dim=self.capacitron_vae.capacitron_VAE_embedding_dim, | |
speaker_embedding_dim=self.embedded_speaker_dim | |
if self.use_speaker_embedding and self.capacitron_vae.capacitron_use_speaker_embedding | |
else None, | |
text_summary_embedding_dim=self.capacitron_vae.capacitron_text_summary_embedding_dim | |
if self.capacitron_vae.capacitron_use_text_summary_embeddings | |
else None, | |
) | |
# backward pass decoder | |
if self.bidirectional_decoder: | |
self._init_backward_decoder() | |
# setup DDC | |
if self.double_decoder_consistency: | |
self.coarse_decoder = Decoder( | |
self.decoder_in_features, | |
self.decoder_output_dim, | |
self.ddc_r, | |
self.memory_size, | |
self.attention_type, | |
self.windowing, | |
self.attention_norm, | |
self.prenet_type, | |
self.prenet_dropout, | |
self.use_forward_attn, | |
self.transition_agent, | |
self.forward_attn_mask, | |
self.location_attn, | |
self.attention_heads, | |
self.separate_stopnet, | |
self.max_decoder_steps, | |
) | |
def forward( # pylint: disable=dangerous-default-value | |
self, text, text_lengths, mel_specs=None, mel_lengths=None, aux_input={"speaker_ids": None, "d_vectors": None} | |
): | |
""" | |
Shapes: | |
text: [B, T_in] | |
text_lengths: [B] | |
mel_specs: [B, T_out, C] | |
mel_lengths: [B] | |
aux_input: 'speaker_ids': [B, 1] and 'd_vectors':[B, C] | |
""" | |
aux_input = self._format_aux_input(aux_input) | |
outputs = {"alignments_backward": None, "decoder_outputs_backward": None} | |
inputs = self.embedding(text) | |
input_mask, output_mask = self.compute_masks(text_lengths, mel_lengths) | |
# B x T_in x encoder_in_features | |
encoder_outputs = self.encoder(inputs) | |
# sequence masking | |
encoder_outputs = encoder_outputs * input_mask.unsqueeze(2).expand_as(encoder_outputs) | |
# global style token | |
if self.gst and self.use_gst: | |
# B x gst_dim | |
encoder_outputs = self.compute_gst(encoder_outputs, mel_specs) | |
# speaker embedding | |
if self.use_speaker_embedding or self.use_d_vector_file: | |
if not self.use_d_vector_file: | |
# B x 1 x speaker_embed_dim | |
embedded_speakers = self.speaker_embedding(aux_input["speaker_ids"])[:, None] | |
else: | |
# B x 1 x speaker_embed_dim | |
embedded_speakers = torch.unsqueeze(aux_input["d_vectors"], 1) | |
encoder_outputs = self._concat_speaker_embedding(encoder_outputs, embedded_speakers) | |
# Capacitron | |
if self.capacitron_vae and self.use_capacitron_vae: | |
# B x capacitron_VAE_embedding_dim | |
encoder_outputs, *capacitron_vae_outputs = self.compute_capacitron_VAE_embedding( | |
encoder_outputs, | |
reference_mel_info=[mel_specs, mel_lengths], | |
text_info=[inputs, text_lengths] | |
if self.capacitron_vae.capacitron_use_text_summary_embeddings | |
else None, | |
speaker_embedding=embedded_speakers if self.capacitron_vae.capacitron_use_speaker_embedding else None, | |
) | |
else: | |
capacitron_vae_outputs = None | |
# decoder_outputs: B x decoder_in_features x T_out | |
# alignments: B x T_in x encoder_in_features | |
# stop_tokens: B x T_in | |
decoder_outputs, alignments, stop_tokens = self.decoder(encoder_outputs, mel_specs, input_mask) | |
# sequence masking | |
if output_mask is not None: | |
decoder_outputs = decoder_outputs * output_mask.unsqueeze(1).expand_as(decoder_outputs) | |
# B x T_out x decoder_in_features | |
postnet_outputs = self.postnet(decoder_outputs) | |
# sequence masking | |
if output_mask is not None: | |
postnet_outputs = postnet_outputs * output_mask.unsqueeze(2).expand_as(postnet_outputs) | |
# B x T_out x posnet_dim | |
postnet_outputs = self.last_linear(postnet_outputs) | |
# B x T_out x decoder_in_features | |
decoder_outputs = decoder_outputs.transpose(1, 2).contiguous() | |
if self.bidirectional_decoder: | |
decoder_outputs_backward, alignments_backward = self._backward_pass(mel_specs, encoder_outputs, input_mask) | |
outputs["alignments_backward"] = alignments_backward | |
outputs["decoder_outputs_backward"] = decoder_outputs_backward | |
if self.double_decoder_consistency: | |
decoder_outputs_backward, alignments_backward = self._coarse_decoder_pass( | |
mel_specs, encoder_outputs, alignments, input_mask | |
) | |
outputs["alignments_backward"] = alignments_backward | |
outputs["decoder_outputs_backward"] = decoder_outputs_backward | |
outputs.update( | |
{ | |
"model_outputs": postnet_outputs, | |
"decoder_outputs": decoder_outputs, | |
"alignments": alignments, | |
"stop_tokens": stop_tokens, | |
"capacitron_vae_outputs": capacitron_vae_outputs, | |
} | |
) | |
return outputs | |
def inference(self, text_input, aux_input=None): | |
aux_input = self._format_aux_input(aux_input) | |
inputs = self.embedding(text_input) | |
encoder_outputs = self.encoder(inputs) | |
if self.gst and self.use_gst: | |
# B x gst_dim | |
encoder_outputs = self.compute_gst(encoder_outputs, aux_input["style_mel"], aux_input["d_vectors"]) | |
if self.capacitron_vae and self.use_capacitron_vae: | |
if aux_input["style_text"] is not None: | |
style_text_embedding = self.embedding(aux_input["style_text"]) | |
style_text_length = torch.tensor([style_text_embedding.size(1)], dtype=torch.int64).to( | |
encoder_outputs.device | |
) # pylint: disable=not-callable | |
reference_mel_length = ( | |
torch.tensor([aux_input["style_mel"].size(1)], dtype=torch.int64).to(encoder_outputs.device) | |
if aux_input["style_mel"] is not None | |
else None | |
) # pylint: disable=not-callable | |
# B x capacitron_VAE_embedding_dim | |
encoder_outputs, *_ = self.compute_capacitron_VAE_embedding( | |
encoder_outputs, | |
reference_mel_info=[aux_input["style_mel"], reference_mel_length] | |
if aux_input["style_mel"] is not None | |
else None, | |
text_info=[style_text_embedding, style_text_length] if aux_input["style_text"] is not None else None, | |
speaker_embedding=aux_input["d_vectors"] | |
if self.capacitron_vae.capacitron_use_speaker_embedding | |
else None, | |
) | |
if self.num_speakers > 1: | |
if not self.use_d_vector_file: | |
# B x 1 x speaker_embed_dim | |
embedded_speakers = self.speaker_embedding(aux_input["speaker_ids"]) | |
# reshape embedded_speakers | |
if embedded_speakers.ndim == 1: | |
embedded_speakers = embedded_speakers[None, None, :] | |
elif embedded_speakers.ndim == 2: | |
embedded_speakers = embedded_speakers[None, :] | |
else: | |
# B x 1 x speaker_embed_dim | |
embedded_speakers = torch.unsqueeze(aux_input["d_vectors"], 1) | |
encoder_outputs = self._concat_speaker_embedding(encoder_outputs, embedded_speakers) | |
decoder_outputs, alignments, stop_tokens = self.decoder.inference(encoder_outputs) | |
postnet_outputs = self.postnet(decoder_outputs) | |
postnet_outputs = self.last_linear(postnet_outputs) | |
decoder_outputs = decoder_outputs.transpose(1, 2) | |
outputs = { | |
"model_outputs": postnet_outputs, | |
"decoder_outputs": decoder_outputs, | |
"alignments": alignments, | |
"stop_tokens": stop_tokens, | |
} | |
return outputs | |
def before_backward_pass(self, loss_dict, optimizer) -> None: | |
# Extracting custom training specific operations for capacitron | |
# from the trainer | |
if self.use_capacitron_vae: | |
loss_dict["capacitron_vae_beta_loss"].backward() | |
optimizer.first_step() | |
def train_step(self, batch: Dict, criterion: torch.nn.Module) -> Tuple[Dict, Dict]: | |
"""Perform a single training step by fetching the right set of samples from the batch. | |
Args: | |
batch ([Dict]): A dictionary of input tensors. | |
criterion ([torch.nn.Module]): Callable criterion to compute model loss. | |
""" | |
text_input = batch["text_input"] | |
text_lengths = batch["text_lengths"] | |
mel_input = batch["mel_input"] | |
mel_lengths = batch["mel_lengths"] | |
linear_input = batch["linear_input"] | |
stop_targets = batch["stop_targets"] | |
stop_target_lengths = batch["stop_target_lengths"] | |
speaker_ids = batch["speaker_ids"] | |
d_vectors = batch["d_vectors"] | |
aux_input = {"speaker_ids": speaker_ids, "d_vectors": d_vectors} | |
outputs = self.forward(text_input, text_lengths, mel_input, mel_lengths, aux_input) | |
# set the [alignment] lengths wrt reduction factor for guided attention | |
if mel_lengths.max() % self.decoder.r != 0: | |
alignment_lengths = ( | |
mel_lengths + (self.decoder.r - (mel_lengths.max() % self.decoder.r)) | |
) // self.decoder.r | |
else: | |
alignment_lengths = mel_lengths // self.decoder.r | |
# compute loss | |
with autocast(enabled=False): # use float32 for the criterion | |
loss_dict = criterion( | |
outputs["model_outputs"].float(), | |
outputs["decoder_outputs"].float(), | |
mel_input.float(), | |
linear_input.float(), | |
outputs["stop_tokens"].float(), | |
stop_targets.float(), | |
stop_target_lengths, | |
outputs["capacitron_vae_outputs"] if self.capacitron_vae else None, | |
mel_lengths, | |
None if outputs["decoder_outputs_backward"] is None else outputs["decoder_outputs_backward"].float(), | |
outputs["alignments"].float(), | |
alignment_lengths, | |
None if outputs["alignments_backward"] is None else outputs["alignments_backward"].float(), | |
text_lengths, | |
) | |
# compute alignment error (the lower the better ) | |
align_error = 1 - alignment_diagonal_score(outputs["alignments"]) | |
loss_dict["align_error"] = align_error | |
return outputs, loss_dict | |
def get_optimizer(self) -> List: | |
if self.use_capacitron_vae: | |
return CapacitronOptimizer(self.config, self.named_parameters()) | |
return get_optimizer(self.config.optimizer, self.config.optimizer_params, self.config.lr, self) | |
def get_scheduler(self, optimizer: object): | |
opt = optimizer.primary_optimizer if self.use_capacitron_vae else optimizer | |
return get_scheduler(self.config.lr_scheduler, self.config.lr_scheduler_params, opt) | |
def before_gradient_clipping(self): | |
if self.use_capacitron_vae: | |
# Capacitron model specific gradient clipping | |
model_params_to_clip = [] | |
for name, param in self.named_parameters(): | |
if param.requires_grad: | |
if name != "capacitron_vae_layer.beta": | |
model_params_to_clip.append(param) | |
torch.nn.utils.clip_grad_norm_(model_params_to_clip, self.capacitron_vae.capacitron_grad_clip) | |
def _create_logs(self, batch, outputs, ap): | |
postnet_outputs = outputs["model_outputs"] | |
decoder_outputs = outputs["decoder_outputs"] | |
alignments = outputs["alignments"] | |
alignments_backward = outputs["alignments_backward"] | |
mel_input = batch["mel_input"] | |
linear_input = batch["linear_input"] | |
pred_linear_spec = postnet_outputs[0].data.cpu().numpy() | |
pred_mel_spec = decoder_outputs[0].data.cpu().numpy() | |
gt_linear_spec = linear_input[0].data.cpu().numpy() | |
gt_mel_spec = mel_input[0].data.cpu().numpy() | |
align_img = alignments[0].data.cpu().numpy() | |
figures = { | |
"pred_linear_spec": plot_spectrogram(pred_linear_spec, ap, output_fig=False), | |
"real_linear_spec": plot_spectrogram(gt_linear_spec, ap, output_fig=False), | |
"pred_mel_spec": plot_spectrogram(pred_mel_spec, ap, output_fig=False), | |
"real_mel_spec": plot_spectrogram(gt_mel_spec, ap, output_fig=False), | |
"alignment": plot_alignment(align_img, output_fig=False), | |
} | |
if self.bidirectional_decoder or self.double_decoder_consistency: | |
figures["alignment_backward"] = plot_alignment(alignments_backward[0].data.cpu().numpy(), output_fig=False) | |
# Sample audio | |
audio = ap.inv_spectrogram(pred_linear_spec.T) | |
return figures, {"audio": audio} | |
def train_log( | |
self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int | |
) -> None: # pylint: disable=no-self-use | |
figures, audios = self._create_logs(batch, outputs, self.ap) | |
logger.train_figures(steps, figures) | |
logger.train_audios(steps, audios, self.ap.sample_rate) | |
def eval_step(self, batch: dict, criterion: nn.Module): | |
return self.train_step(batch, criterion) | |
def eval_log(self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int) -> None: | |
figures, audios = self._create_logs(batch, outputs, self.ap) | |
logger.eval_figures(steps, figures) | |
logger.eval_audios(steps, audios, self.ap.sample_rate) | |
def init_from_config(config: "TacotronConfig", samples: Union[List[List], List[Dict]] = None): | |
"""Initiate model from config | |
Args: | |
config (TacotronConfig): Model config. | |
samples (Union[List[List], List[Dict]]): Training samples to parse speaker ids for training. | |
Defaults to None. | |
""" | |
from TTS.utils.audio import AudioProcessor | |
ap = AudioProcessor.init_from_config(config) | |
tokenizer, new_config = TTSTokenizer.init_from_config(config) | |
speaker_manager = SpeakerManager.init_from_config(config, samples) | |
return Tacotron(new_config, ap, tokenizer, speaker_manager) | |