Spaces:
Running
Running
""" | |
Much of this code is adapted from Andrej Karpathy's NanoGPT | |
(https://github.com/karpathy/nanoGPT) | |
""" | |
import math | |
from dataclasses import dataclass | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from .model import GPT, MLP, GPTConfig | |
class NonCausalSelfAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
assert config.n_embd % config.n_head == 0 | |
# key, query, value projections for all heads, but in a batch | |
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) | |
# output projection | |
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) | |
# regularization | |
self.attn_dropout = nn.Dropout(config.dropout) | |
self.resid_dropout = nn.Dropout(config.dropout) | |
self.n_head = config.n_head | |
self.n_embd = config.n_embd | |
self.dropout = config.dropout | |
# flash attention make GPU go brrrrr but support is only in PyTorch nightly and still a bit scary | |
self.flash = hasattr(torch.nn.functional, "scaled_dot_product_attention") and self.dropout == 0.0 | |
def forward(self, x): | |
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd) | |
# calculate query, key, values for all heads in batch and move head forward to be the batch dim | |
q, k, v = self.c_attn(x).split(self.n_embd, dim=2) | |
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) | |
if self.flash: | |
# efficient attention using Flash Attention CUDA kernels | |
y = torch.nn.functional.scaled_dot_product_attention( | |
q, k, v, attn_mask=None, dropout_p=self.dropout, is_causal=False | |
) | |
else: | |
# manual implementation of attention | |
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) | |
att = F.softmax(att, dim=-1) | |
att = self.attn_dropout(att) | |
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) | |
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side | |
# output projection | |
y = self.resid_dropout(self.c_proj(y)) | |
return y | |
class FineBlock(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.ln_1 = nn.LayerNorm(config.n_embd) | |
self.attn = NonCausalSelfAttention(config) | |
self.ln_2 = nn.LayerNorm(config.n_embd) | |
self.mlp = MLP(config) | |
def forward(self, x): | |
x = x + self.attn(self.ln_1(x)) | |
x = x + self.mlp(self.ln_2(x)) | |
return x | |
class FineGPT(GPT): | |
def __init__(self, config): | |
super().__init__(config) | |
del self.lm_head | |
self.config = config | |
self.n_codes_total = config.n_codes_total | |
self.transformer = nn.ModuleDict( | |
dict( | |
wtes=nn.ModuleList( | |
[nn.Embedding(config.input_vocab_size, config.n_embd) for _ in range(config.n_codes_total)] | |
), | |
wpe=nn.Embedding(config.block_size, config.n_embd), | |
drop=nn.Dropout(config.dropout), | |
h=nn.ModuleList([FineBlock(config) for _ in range(config.n_layer)]), | |
ln_f=nn.LayerNorm(config.n_embd), | |
) | |
) | |
self.lm_heads = nn.ModuleList( | |
[ | |
nn.Linear(config.n_embd, config.output_vocab_size, bias=False) | |
for _ in range(config.n_codes_given, self.n_codes_total) | |
] | |
) | |
for i in range(self.n_codes_total - config.n_codes_given): | |
self.transformer.wtes[i + 1].weight = self.lm_heads[i].weight | |
def forward(self, pred_idx, idx): | |
device = idx.device | |
b, t, codes = idx.size() | |
assert ( | |
t <= self.config.block_size | |
), f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" | |
assert pred_idx > 0, "cannot predict 0th codebook" | |
assert codes == self.n_codes_total, (b, t, codes) | |
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) # shape (1, t) | |
# forward the GPT model itself | |
tok_embs = [ | |
wte(idx[:, :, i]).unsqueeze(-1) for i, wte in enumerate(self.transformer.wtes) | |
] # token embeddings of shape (b, t, n_embd) | |
tok_emb = torch.cat(tok_embs, dim=-1) | |
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (1, t, n_embd) | |
x = tok_emb[:, :, :, : pred_idx + 1].sum(dim=-1) | |
x = self.transformer.drop(x + pos_emb) | |
for block in self.transformer.h: | |
x = block(x) | |
x = self.transformer.ln_f(x) | |
logits = self.lm_heads[pred_idx - self.config.n_codes_given](x) | |
return logits | |
def get_num_params(self, non_embedding=True): | |
""" | |
Return the number of parameters in the model. | |
For non-embedding count (default), the position embeddings get subtracted. | |
The token embeddings would too, except due to the parameter sharing these | |
params are actually used as weights in the final layer, so we include them. | |
""" | |
n_params = sum(p.numel() for p in self.parameters()) | |
if non_embedding: | |
for wte in self.transformer.wtes: | |
n_params -= wte.weight.numel() | |
n_params -= self.transformer.wpe.weight.numel() | |
return n_params | |
class FineGPTConfig(GPTConfig): | |
n_codes_total: int = 8 | |
n_codes_given: int = 1 | |