Spaces:
Running
Running
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
import os | |
import sys | |
import time | |
import traceback | |
import torch | |
from torch.utils.data import DataLoader | |
from trainer.torch import NoamLR | |
from trainer.trainer_utils import get_optimizer | |
from TTS.encoder.dataset import EncoderDataset | |
from TTS.encoder.utils.generic_utils import save_best_model, save_checkpoint, setup_encoder_model | |
from TTS.encoder.utils.training import init_training | |
from TTS.encoder.utils.visual import plot_embeddings | |
from TTS.tts.datasets import load_tts_samples | |
from TTS.utils.audio import AudioProcessor | |
from TTS.utils.generic_utils import count_parameters, remove_experiment_folder | |
from TTS.utils.io import copy_model_files | |
from TTS.utils.samplers import PerfectBatchSampler | |
from TTS.utils.training import check_update | |
torch.backends.cudnn.enabled = True | |
torch.backends.cudnn.benchmark = True | |
torch.manual_seed(54321) | |
use_cuda = torch.cuda.is_available() | |
num_gpus = torch.cuda.device_count() | |
print(" > Using CUDA: ", use_cuda) | |
print(" > Number of GPUs: ", num_gpus) | |
def setup_loader(ap: AudioProcessor, is_val: bool = False, verbose: bool = False): | |
num_utter_per_class = c.num_utter_per_class if not is_val else c.eval_num_utter_per_class | |
num_classes_in_batch = c.num_classes_in_batch if not is_val else c.eval_num_classes_in_batch | |
dataset = EncoderDataset( | |
c, | |
ap, | |
meta_data_eval if is_val else meta_data_train, | |
voice_len=c.voice_len, | |
num_utter_per_class=num_utter_per_class, | |
num_classes_in_batch=num_classes_in_batch, | |
verbose=verbose, | |
augmentation_config=c.audio_augmentation if not is_val else None, | |
use_torch_spec=c.model_params.get("use_torch_spec", False), | |
) | |
# get classes list | |
classes = dataset.get_class_list() | |
sampler = PerfectBatchSampler( | |
dataset.items, | |
classes, | |
batch_size=num_classes_in_batch * num_utter_per_class, # total batch size | |
num_classes_in_batch=num_classes_in_batch, | |
num_gpus=1, | |
shuffle=not is_val, | |
drop_last=True, | |
) | |
if len(classes) < num_classes_in_batch: | |
if is_val: | |
raise RuntimeError( | |
f"config.eval_num_classes_in_batch ({num_classes_in_batch}) need to be <= {len(classes)} (Number total of Classes in the Eval dataset) !" | |
) | |
raise RuntimeError( | |
f"config.num_classes_in_batch ({num_classes_in_batch}) need to be <= {len(classes)} (Number total of Classes in the Train dataset) !" | |
) | |
# set the classes to avoid get wrong class_id when the number of training and eval classes are not equal | |
if is_val: | |
dataset.set_classes(train_classes) | |
loader = DataLoader( | |
dataset, | |
num_workers=c.num_loader_workers, | |
batch_sampler=sampler, | |
collate_fn=dataset.collate_fn, | |
) | |
return loader, classes, dataset.get_map_classid_to_classname() | |
def evaluation(model, criterion, data_loader, global_step): | |
eval_loss = 0 | |
for _, data in enumerate(data_loader): | |
with torch.no_grad(): | |
# setup input data | |
inputs, labels = data | |
# agroup samples of each class in the batch. perfect sampler produces [3,2,1,3,2,1] we need [3,3,2,2,1,1] | |
labels = torch.transpose( | |
labels.view(c.eval_num_utter_per_class, c.eval_num_classes_in_batch), 0, 1 | |
).reshape(labels.shape) | |
inputs = torch.transpose( | |
inputs.view(c.eval_num_utter_per_class, c.eval_num_classes_in_batch, -1), 0, 1 | |
).reshape(inputs.shape) | |
# dispatch data to GPU | |
if use_cuda: | |
inputs = inputs.cuda(non_blocking=True) | |
labels = labels.cuda(non_blocking=True) | |
# forward pass model | |
outputs = model(inputs) | |
# loss computation | |
loss = criterion( | |
outputs.view(c.eval_num_classes_in_batch, outputs.shape[0] // c.eval_num_classes_in_batch, -1), labels | |
) | |
eval_loss += loss.item() | |
eval_avg_loss = eval_loss / len(data_loader) | |
# save stats | |
dashboard_logger.eval_stats(global_step, {"loss": eval_avg_loss}) | |
# plot the last batch in the evaluation | |
figures = { | |
"UMAP Plot": plot_embeddings(outputs.detach().cpu().numpy(), c.num_classes_in_batch), | |
} | |
dashboard_logger.eval_figures(global_step, figures) | |
return eval_avg_loss | |
def train(model, optimizer, scheduler, criterion, data_loader, eval_data_loader, global_step): | |
model.train() | |
best_loss = float("inf") | |
avg_loader_time = 0 | |
end_time = time.time() | |
for epoch in range(c.epochs): | |
tot_loss = 0 | |
epoch_time = 0 | |
for _, data in enumerate(data_loader): | |
start_time = time.time() | |
# setup input data | |
inputs, labels = data | |
# agroup samples of each class in the batch. perfect sampler produces [3,2,1,3,2,1] we need [3,3,2,2,1,1] | |
labels = torch.transpose(labels.view(c.num_utter_per_class, c.num_classes_in_batch), 0, 1).reshape( | |
labels.shape | |
) | |
inputs = torch.transpose(inputs.view(c.num_utter_per_class, c.num_classes_in_batch, -1), 0, 1).reshape( | |
inputs.shape | |
) | |
# ToDo: move it to a unit test | |
# labels_converted = torch.transpose(labels.view(c.num_utter_per_class, c.num_classes_in_batch), 0, 1).reshape(labels.shape) | |
# inputs_converted = torch.transpose(inputs.view(c.num_utter_per_class, c.num_classes_in_batch, -1), 0, 1).reshape(inputs.shape) | |
# idx = 0 | |
# for j in range(0, c.num_classes_in_batch, 1): | |
# for i in range(j, len(labels), c.num_classes_in_batch): | |
# if not torch.all(labels[i].eq(labels_converted[idx])) or not torch.all(inputs[i].eq(inputs_converted[idx])): | |
# print("Invalid") | |
# print(labels) | |
# exit() | |
# idx += 1 | |
# labels = labels_converted | |
# inputs = inputs_converted | |
loader_time = time.time() - end_time | |
global_step += 1 | |
# setup lr | |
if c.lr_decay: | |
scheduler.step() | |
optimizer.zero_grad() | |
# dispatch data to GPU | |
if use_cuda: | |
inputs = inputs.cuda(non_blocking=True) | |
labels = labels.cuda(non_blocking=True) | |
# forward pass model | |
outputs = model(inputs) | |
# loss computation | |
loss = criterion( | |
outputs.view(c.num_classes_in_batch, outputs.shape[0] // c.num_classes_in_batch, -1), labels | |
) | |
loss.backward() | |
grad_norm, _ = check_update(model, c.grad_clip) | |
optimizer.step() | |
step_time = time.time() - start_time | |
epoch_time += step_time | |
# acumulate the total epoch loss | |
tot_loss += loss.item() | |
# Averaged Loader Time | |
num_loader_workers = c.num_loader_workers if c.num_loader_workers > 0 else 1 | |
avg_loader_time = ( | |
1 / num_loader_workers * loader_time + (num_loader_workers - 1) / num_loader_workers * avg_loader_time | |
if avg_loader_time != 0 | |
else loader_time | |
) | |
current_lr = optimizer.param_groups[0]["lr"] | |
if global_step % c.steps_plot_stats == 0: | |
# Plot Training Epoch Stats | |
train_stats = { | |
"loss": loss.item(), | |
"lr": current_lr, | |
"grad_norm": grad_norm, | |
"step_time": step_time, | |
"avg_loader_time": avg_loader_time, | |
} | |
dashboard_logger.train_epoch_stats(global_step, train_stats) | |
figures = { | |
"UMAP Plot": plot_embeddings(outputs.detach().cpu().numpy(), c.num_classes_in_batch), | |
} | |
dashboard_logger.train_figures(global_step, figures) | |
if global_step % c.print_step == 0: | |
print( | |
" | > Step:{} Loss:{:.5f} GradNorm:{:.5f} " | |
"StepTime:{:.2f} LoaderTime:{:.2f} AvGLoaderTime:{:.2f} LR:{:.6f}".format( | |
global_step, loss.item(), grad_norm, step_time, loader_time, avg_loader_time, current_lr | |
), | |
flush=True, | |
) | |
if global_step % c.save_step == 0: | |
# save model | |
save_checkpoint(model, optimizer, criterion, loss.item(), OUT_PATH, global_step, epoch) | |
end_time = time.time() | |
print("") | |
print( | |
">>> Epoch:{} AvgLoss: {:.5f} GradNorm:{:.5f} " | |
"EpochTime:{:.2f} AvGLoaderTime:{:.2f} ".format( | |
epoch, tot_loss / len(data_loader), grad_norm, epoch_time, avg_loader_time | |
), | |
flush=True, | |
) | |
# evaluation | |
if c.run_eval: | |
model.eval() | |
eval_loss = evaluation(model, criterion, eval_data_loader, global_step) | |
print("\n\n") | |
print("--> EVAL PERFORMANCE") | |
print( | |
" | > Epoch:{} AvgLoss: {:.5f} ".format(epoch, eval_loss), | |
flush=True, | |
) | |
# save the best checkpoint | |
best_loss = save_best_model(model, optimizer, criterion, eval_loss, best_loss, OUT_PATH, global_step, epoch) | |
model.train() | |
return best_loss, global_step | |
def main(args): # pylint: disable=redefined-outer-name | |
# pylint: disable=global-variable-undefined | |
global meta_data_train | |
global meta_data_eval | |
global train_classes | |
ap = AudioProcessor(**c.audio) | |
model = setup_encoder_model(c) | |
optimizer = get_optimizer(c.optimizer, c.optimizer_params, c.lr, model) | |
# pylint: disable=redefined-outer-name | |
meta_data_train, meta_data_eval = load_tts_samples(c.datasets, eval_split=True) | |
train_data_loader, train_classes, map_classid_to_classname = setup_loader(ap, is_val=False, verbose=True) | |
if c.run_eval: | |
eval_data_loader, _, _ = setup_loader(ap, is_val=True, verbose=True) | |
else: | |
eval_data_loader = None | |
num_classes = len(train_classes) | |
criterion = model.get_criterion(c, num_classes) | |
if c.loss == "softmaxproto" and c.model != "speaker_encoder": | |
c.map_classid_to_classname = map_classid_to_classname | |
copy_model_files(c, OUT_PATH) | |
if args.restore_path: | |
criterion, args.restore_step = model.load_checkpoint( | |
c, args.restore_path, eval=False, use_cuda=use_cuda, criterion=criterion | |
) | |
print(" > Model restored from step %d" % args.restore_step, flush=True) | |
else: | |
args.restore_step = 0 | |
if c.lr_decay: | |
scheduler = NoamLR(optimizer, warmup_steps=c.warmup_steps, last_epoch=args.restore_step - 1) | |
else: | |
scheduler = None | |
num_params = count_parameters(model) | |
print("\n > Model has {} parameters".format(num_params), flush=True) | |
if use_cuda: | |
model = model.cuda() | |
criterion.cuda() | |
global_step = args.restore_step | |
_, global_step = train(model, optimizer, scheduler, criterion, train_data_loader, eval_data_loader, global_step) | |
if __name__ == "__main__": | |
args, c, OUT_PATH, AUDIO_PATH, c_logger, dashboard_logger = init_training() | |
try: | |
main(args) | |
except KeyboardInterrupt: | |
remove_experiment_folder(OUT_PATH) | |
try: | |
sys.exit(0) | |
except SystemExit: | |
os._exit(0) # pylint: disable=protected-access | |
except Exception: # pylint: disable=broad-except | |
remove_experiment_folder(OUT_PATH) | |
traceback.print_exc() | |
sys.exit(1) | |