Spaces:
Running
Running
#!/usr/bin/env python3 | |
"""Extract Mel spectrograms with teacher forcing.""" | |
import argparse | |
import os | |
import numpy as np | |
import torch | |
from torch.utils.data import DataLoader | |
from tqdm import tqdm | |
from TTS.config import load_config | |
from TTS.tts.datasets import TTSDataset, load_tts_samples | |
from TTS.tts.models import setup_model | |
from TTS.tts.utils.speakers import SpeakerManager | |
from TTS.tts.utils.text.tokenizer import TTSTokenizer | |
from TTS.utils.audio import AudioProcessor | |
from TTS.utils.audio.numpy_transforms import quantize | |
from TTS.utils.generic_utils import count_parameters | |
use_cuda = torch.cuda.is_available() | |
def setup_loader(ap, r, verbose=False): | |
tokenizer, _ = TTSTokenizer.init_from_config(c) | |
dataset = TTSDataset( | |
outputs_per_step=r, | |
compute_linear_spec=False, | |
samples=meta_data, | |
tokenizer=tokenizer, | |
ap=ap, | |
batch_group_size=0, | |
min_text_len=c.min_text_len, | |
max_text_len=c.max_text_len, | |
min_audio_len=c.min_audio_len, | |
max_audio_len=c.max_audio_len, | |
phoneme_cache_path=c.phoneme_cache_path, | |
precompute_num_workers=0, | |
use_noise_augment=False, | |
verbose=verbose, | |
speaker_id_mapping=speaker_manager.name_to_id if c.use_speaker_embedding else None, | |
d_vector_mapping=speaker_manager.embeddings if c.use_d_vector_file else None, | |
) | |
if c.use_phonemes and c.compute_input_seq_cache: | |
# precompute phonemes to have a better estimate of sequence lengths. | |
dataset.compute_input_seq(c.num_loader_workers) | |
dataset.preprocess_samples() | |
loader = DataLoader( | |
dataset, | |
batch_size=c.batch_size, | |
shuffle=False, | |
collate_fn=dataset.collate_fn, | |
drop_last=False, | |
sampler=None, | |
num_workers=c.num_loader_workers, | |
pin_memory=False, | |
) | |
return loader | |
def set_filename(wav_path, out_path): | |
wav_file = os.path.basename(wav_path) | |
file_name = wav_file.split(".")[0] | |
os.makedirs(os.path.join(out_path, "quant"), exist_ok=True) | |
os.makedirs(os.path.join(out_path, "mel"), exist_ok=True) | |
os.makedirs(os.path.join(out_path, "wav_gl"), exist_ok=True) | |
os.makedirs(os.path.join(out_path, "wav"), exist_ok=True) | |
wavq_path = os.path.join(out_path, "quant", file_name) | |
mel_path = os.path.join(out_path, "mel", file_name) | |
wav_gl_path = os.path.join(out_path, "wav_gl", file_name + ".wav") | |
wav_path = os.path.join(out_path, "wav", file_name + ".wav") | |
return file_name, wavq_path, mel_path, wav_gl_path, wav_path | |
def format_data(data): | |
# setup input data | |
text_input = data["token_id"] | |
text_lengths = data["token_id_lengths"] | |
mel_input = data["mel"] | |
mel_lengths = data["mel_lengths"] | |
item_idx = data["item_idxs"] | |
d_vectors = data["d_vectors"] | |
speaker_ids = data["speaker_ids"] | |
attn_mask = data["attns"] | |
avg_text_length = torch.mean(text_lengths.float()) | |
avg_spec_length = torch.mean(mel_lengths.float()) | |
# dispatch data to GPU | |
if use_cuda: | |
text_input = text_input.cuda(non_blocking=True) | |
text_lengths = text_lengths.cuda(non_blocking=True) | |
mel_input = mel_input.cuda(non_blocking=True) | |
mel_lengths = mel_lengths.cuda(non_blocking=True) | |
if speaker_ids is not None: | |
speaker_ids = speaker_ids.cuda(non_blocking=True) | |
if d_vectors is not None: | |
d_vectors = d_vectors.cuda(non_blocking=True) | |
if attn_mask is not None: | |
attn_mask = attn_mask.cuda(non_blocking=True) | |
return ( | |
text_input, | |
text_lengths, | |
mel_input, | |
mel_lengths, | |
speaker_ids, | |
d_vectors, | |
avg_text_length, | |
avg_spec_length, | |
attn_mask, | |
item_idx, | |
) | |
def inference( | |
model_name, | |
model, | |
ap, | |
text_input, | |
text_lengths, | |
mel_input, | |
mel_lengths, | |
speaker_ids=None, | |
d_vectors=None, | |
): | |
if model_name == "glow_tts": | |
speaker_c = None | |
if speaker_ids is not None: | |
speaker_c = speaker_ids | |
elif d_vectors is not None: | |
speaker_c = d_vectors | |
outputs = model.inference_with_MAS( | |
text_input, | |
text_lengths, | |
mel_input, | |
mel_lengths, | |
aux_input={"d_vectors": speaker_c, "speaker_ids": speaker_ids}, | |
) | |
model_output = outputs["model_outputs"] | |
model_output = model_output.detach().cpu().numpy() | |
elif "tacotron" in model_name: | |
aux_input = {"speaker_ids": speaker_ids, "d_vectors": d_vectors} | |
outputs = model(text_input, text_lengths, mel_input, mel_lengths, aux_input) | |
postnet_outputs = outputs["model_outputs"] | |
# normalize tacotron output | |
if model_name == "tacotron": | |
mel_specs = [] | |
postnet_outputs = postnet_outputs.data.cpu().numpy() | |
for b in range(postnet_outputs.shape[0]): | |
postnet_output = postnet_outputs[b] | |
mel_specs.append(torch.FloatTensor(ap.out_linear_to_mel(postnet_output.T).T)) | |
model_output = torch.stack(mel_specs).cpu().numpy() | |
elif model_name == "tacotron2": | |
model_output = postnet_outputs.detach().cpu().numpy() | |
return model_output | |
def extract_spectrograms( | |
data_loader, model, ap, output_path, quantize_bits=0, save_audio=False, debug=False, metada_name="metada.txt" | |
): | |
model.eval() | |
export_metadata = [] | |
for _, data in tqdm(enumerate(data_loader), total=len(data_loader)): | |
# format data | |
( | |
text_input, | |
text_lengths, | |
mel_input, | |
mel_lengths, | |
speaker_ids, | |
d_vectors, | |
_, | |
_, | |
_, | |
item_idx, | |
) = format_data(data) | |
model_output = inference( | |
c.model.lower(), | |
model, | |
ap, | |
text_input, | |
text_lengths, | |
mel_input, | |
mel_lengths, | |
speaker_ids, | |
d_vectors, | |
) | |
for idx in range(text_input.shape[0]): | |
wav_file_path = item_idx[idx] | |
wav = ap.load_wav(wav_file_path) | |
_, wavq_path, mel_path, wav_gl_path, wav_path = set_filename(wav_file_path, output_path) | |
# quantize and save wav | |
if quantize_bits > 0: | |
wavq = quantize(wav, quantize_bits) | |
np.save(wavq_path, wavq) | |
# save TTS mel | |
mel = model_output[idx] | |
mel_length = mel_lengths[idx] | |
mel = mel[:mel_length, :].T | |
np.save(mel_path, mel) | |
export_metadata.append([wav_file_path, mel_path]) | |
if save_audio: | |
ap.save_wav(wav, wav_path) | |
if debug: | |
print("Audio for debug saved at:", wav_gl_path) | |
wav = ap.inv_melspectrogram(mel) | |
ap.save_wav(wav, wav_gl_path) | |
with open(os.path.join(output_path, metada_name), "w", encoding="utf-8") as f: | |
for data in export_metadata: | |
f.write(f"{data[0]}|{data[1]+'.npy'}\n") | |
def main(args): # pylint: disable=redefined-outer-name | |
# pylint: disable=global-variable-undefined | |
global meta_data, speaker_manager | |
# Audio processor | |
ap = AudioProcessor(**c.audio) | |
# load data instances | |
meta_data_train, meta_data_eval = load_tts_samples( | |
c.datasets, eval_split=args.eval, eval_split_max_size=c.eval_split_max_size, eval_split_size=c.eval_split_size | |
) | |
# use eval and training partitions | |
meta_data = meta_data_train + meta_data_eval | |
# init speaker manager | |
if c.use_speaker_embedding: | |
speaker_manager = SpeakerManager(data_items=meta_data) | |
elif c.use_d_vector_file: | |
speaker_manager = SpeakerManager(d_vectors_file_path=c.d_vector_file) | |
else: | |
speaker_manager = None | |
# setup model | |
model = setup_model(c) | |
# restore model | |
model.load_checkpoint(c, args.checkpoint_path, eval=True) | |
if use_cuda: | |
model.cuda() | |
num_params = count_parameters(model) | |
print("\n > Model has {} parameters".format(num_params), flush=True) | |
# set r | |
r = 1 if c.model.lower() == "glow_tts" else model.decoder.r | |
own_loader = setup_loader(ap, r, verbose=True) | |
extract_spectrograms( | |
own_loader, | |
model, | |
ap, | |
args.output_path, | |
quantize_bits=args.quantize_bits, | |
save_audio=args.save_audio, | |
debug=args.debug, | |
metada_name="metada.txt", | |
) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--config_path", type=str, help="Path to config file for training.", required=True) | |
parser.add_argument("--checkpoint_path", type=str, help="Model file to be restored.", required=True) | |
parser.add_argument("--output_path", type=str, help="Path to save mel specs", required=True) | |
parser.add_argument("--debug", default=False, action="store_true", help="Save audio files for debug") | |
parser.add_argument("--save_audio", default=False, action="store_true", help="Save audio files") | |
parser.add_argument("--quantize_bits", type=int, default=0, help="Save quantized audio files if non-zero") | |
parser.add_argument("--eval", type=bool, help="compute eval.", default=True) | |
args = parser.parse_args() | |
c = load_config(args.config_path) | |
c.audio.trim_silence = False | |
main(args) | |