Spaces:
Running
on
Zero
Running
on
Zero
Add approximate state persistence (#73)
Browse filesSummary:
Test Plan:
***
More verbose multiprocess logging, fix get_state_and_recycle
Summary:
Test Plan:
- bytelatent/args.py +8 -2
- bytelatent/data/iterators/multiprocess_iterator.py +150 -54
- bytelatent/train.py +41 -21
bytelatent/args.py
CHANGED
@@ -13,7 +13,10 @@ from bytelatent.data.file_util import get_fs
|
|
13 |
from bytelatent.data.iterators.abstract_iterator import StatefulIterator
|
14 |
from bytelatent.data.iterators.arrow_iterator import ArrowFileIterator
|
15 |
from bytelatent.data.iterators.looping_iterator import LoopingIterator
|
16 |
-
from bytelatent.data.iterators.multiprocess_iterator import
|
|
|
|
|
|
|
17 |
from bytelatent.data.iterators.packing_iterator import (
|
18 |
PackingArgs,
|
19 |
PackingIterator,
|
@@ -130,6 +133,7 @@ class DataloaderArgs(BaseModel):
|
|
130 |
add_bos: bool = True
|
131 |
add_eos: bool = True
|
132 |
load_async: bool = True
|
|
|
133 |
prefetch_size: int = 64
|
134 |
preprocess_dir: str | None = None
|
135 |
dataset_files: list[str] | None = None
|
@@ -215,7 +219,9 @@ class DataloaderArgs(BaseModel):
|
|
215 |
packing_iterator = PackingIterator(sampling_iterator, packing_args=packing_args)
|
216 |
if self.load_async:
|
217 |
mp_iterator = MultiprocessIterator(
|
218 |
-
packing_iterator,
|
|
|
|
|
219 |
)
|
220 |
return mp_iterator
|
221 |
else:
|
|
|
13 |
from bytelatent.data.iterators.abstract_iterator import StatefulIterator
|
14 |
from bytelatent.data.iterators.arrow_iterator import ArrowFileIterator
|
15 |
from bytelatent.data.iterators.looping_iterator import LoopingIterator
|
16 |
+
from bytelatent.data.iterators.multiprocess_iterator import (
|
17 |
+
MultiprocessIterator,
|
18 |
+
PersistType,
|
19 |
+
)
|
20 |
from bytelatent.data.iterators.packing_iterator import (
|
21 |
PackingArgs,
|
22 |
PackingIterator,
|
|
|
133 |
add_bos: bool = True
|
134 |
add_eos: bool = True
|
135 |
load_async: bool = True
|
136 |
+
async_persist_type: PersistType = PersistType.EXACT
|
137 |
prefetch_size: int = 64
|
138 |
preprocess_dir: str | None = None
|
139 |
dataset_files: list[str] | None = None
|
|
|
219 |
packing_iterator = PackingIterator(sampling_iterator, packing_args=packing_args)
|
220 |
if self.load_async:
|
221 |
mp_iterator = MultiprocessIterator(
|
222 |
+
packing_iterator,
|
223 |
+
n_batches_to_prefetch=self.prefetch_size,
|
224 |
+
persist_type=self.async_persist_type,
|
225 |
)
|
226 |
return mp_iterator
|
227 |
else:
|
bytelatent/data/iterators/multiprocess_iterator.py
CHANGED
@@ -2,6 +2,7 @@
|
|
2 |
import json
|
3 |
import logging
|
4 |
import multiprocessing as mp
|
|
|
5 |
from multiprocessing.synchronize import Event as EventClass
|
6 |
from queue import Empty, Full
|
7 |
|
@@ -19,11 +20,17 @@ from bytelatent.data.iterators.packing_iterator import PackingIteratorState
|
|
19 |
logger = logging.getLogger()
|
20 |
|
21 |
|
|
|
|
|
|
|
|
|
|
|
22 |
class MultiprocessIteratorState(PydanticIteratorState):
|
23 |
model_config = ConfigDict(extra="forbid")
|
24 |
base_iterator_state: PackingIteratorState
|
25 |
n_batches_to_prefetch: int
|
26 |
serialized_prefetch_buffer: str
|
|
|
27 |
|
28 |
def build(self):
|
29 |
base_iterator = self.base_iterator_state.build()
|
@@ -33,14 +40,19 @@ class MultiprocessIteratorState(PydanticIteratorState):
|
|
33 |
base_iterator,
|
34 |
n_batches_to_prefetch=self.n_batches_to_prefetch,
|
35 |
prefetch_buffer=prefetch_buffer,
|
|
|
36 |
)
|
37 |
|
38 |
|
39 |
def start_work_from_state(
|
40 |
batch_queue: mp.Queue,
|
41 |
state_queue: mp.Queue,
|
|
|
42 |
stop_event: EventClass,
|
43 |
state_dumped_event: EventClass,
|
|
|
|
|
|
|
44 |
state: IteratorState,
|
45 |
):
|
46 |
logging.info("Worker thread: Starting base_iterator work")
|
@@ -49,6 +61,25 @@ def start_work_from_state(
|
|
49 |
for item in iterator:
|
50 |
while not stop_event.is_set():
|
51 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
# Attempt to put on queue or timeout to try again (maybe main thread is busy)
|
53 |
batch_queue.put(item, timeout=0.1)
|
54 |
# On success, stop trying
|
@@ -58,10 +89,10 @@ def start_work_from_state(
|
|
58 |
if stop_event.is_set():
|
59 |
# Signal the end of output, this ensures that even if the queue takes a while to
|
60 |
# buffer, that the main thread receives everything (and tosses this fake batch)
|
61 |
-
logging.
|
62 |
"Worker thread: Stop event detected, outputting is_final=True batch"
|
63 |
)
|
64 |
-
logging.
|
65 |
batch_queue.put(
|
66 |
Batch(
|
67 |
x=np.zeros((1, 1)),
|
@@ -72,23 +103,26 @@ def start_work_from_state(
|
|
72 |
ngram_ids=None,
|
73 |
)
|
74 |
)
|
75 |
-
logging.
|
76 |
"Worker thread: is_final=True batch put in queue, breaking from loop."
|
77 |
)
|
78 |
break
|
79 |
|
80 |
try:
|
81 |
-
logging.
|
82 |
state_queue.put(stateful_iterator.get_state(), timeout=1)
|
83 |
-
logging.
|
84 |
state_dumped_event.set()
|
85 |
-
logging.
|
86 |
except Full:
|
87 |
raise ValueError(
|
88 |
"Attempted to dump state into the state queue, but it was full"
|
89 |
)
|
90 |
|
91 |
|
|
|
|
|
|
|
92 |
class MultiprocessIterator(StatefulIterator):
|
93 |
"""
|
94 |
Design sketch of the multiprocess iterator:
|
@@ -124,18 +158,24 @@ class MultiprocessIterator(StatefulIterator):
|
|
124 |
base_iterator: StatefulIterator,
|
125 |
*,
|
126 |
n_batches_to_prefetch: int,
|
127 |
-
prefetch_buffer: list | None = None
|
|
|
128 |
):
|
129 |
self.base_iterator = base_iterator
|
130 |
self.n_batches_to_prefetch = n_batches_to_prefetch
|
|
|
131 |
if prefetch_buffer is None:
|
132 |
prefetch_buffer = []
|
133 |
self.prefetch_buffer = prefetch_buffer
|
134 |
self.batch_queue = None
|
135 |
self.state_queue = None
|
|
|
136 |
self.producer = None
|
137 |
self.stop_iterating_event = None
|
138 |
self.state_dumped_event = None
|
|
|
|
|
|
|
139 |
self.force_shutdown = False
|
140 |
|
141 |
def shutdown(self):
|
@@ -144,6 +184,92 @@ class MultiprocessIterator(StatefulIterator):
|
|
144 |
self.producer.kill()
|
145 |
self.force_shutdown = True
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
def get_state(self) -> MultiprocessIteratorState:
|
148 |
"""
|
149 |
This is slightly unusual in effectively destroying the current iterator, its necessary
|
@@ -162,55 +288,15 @@ class MultiprocessIterator(StatefulIterator):
|
|
162 |
base_iterator_state=self.base_iterator.get_state(),
|
163 |
n_batches_to_prefetch=self.n_batches_to_prefetch,
|
164 |
serialized_prefetch_buffer=serialized_prefetch_buffer,
|
|
|
165 |
)
|
166 |
else:
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
final_batch_received = False
|
174 |
-
while True:
|
175 |
-
try:
|
176 |
-
batch = self.batch_queue.get(timeout=1)
|
177 |
-
if batch.is_final:
|
178 |
-
logging.debug(
|
179 |
-
"Main thread: is_final=True batch found, stopping fetch from batch_queue"
|
180 |
-
)
|
181 |
-
final_batch_received = True
|
182 |
-
break
|
183 |
-
self.prefetch_buffer.append(batch)
|
184 |
-
except Empty:
|
185 |
-
logging.warning("Main thread: batch_queue is abnormally empty")
|
186 |
-
assert final_batch_received
|
187 |
-
|
188 |
-
logging.debug("Main thread: Waiting for state_dumped event")
|
189 |
-
self.state_dumped_event.wait()
|
190 |
-
|
191 |
-
try:
|
192 |
-
base_iterator_state = self.state_queue.get(timeout=1)
|
193 |
-
assert isinstance(base_iterator_state, IteratorState)
|
194 |
-
except Empty:
|
195 |
-
raise ValueError(
|
196 |
-
"Attempted to get the state, but it was unexpectantly missing"
|
197 |
-
)
|
198 |
-
|
199 |
-
self.base_iterator = base_iterator_state.build()
|
200 |
-
self.producer.close()
|
201 |
-
self.producer = None
|
202 |
-
self.batch_queue = None
|
203 |
-
self.state_queue = None
|
204 |
-
self.stop_iterating_event = None
|
205 |
-
self.state_dumped_event = None
|
206 |
-
|
207 |
-
return MultiprocessIteratorState(
|
208 |
-
base_iterator_state=self.base_iterator.get_state(),
|
209 |
-
n_batches_to_prefetch=self.n_batches_to_prefetch,
|
210 |
-
serialized_prefetch_buffer=json.dumps(
|
211 |
-
[b.to_python_dict() for b in self.prefetch_buffer]
|
212 |
-
),
|
213 |
-
)
|
214 |
|
215 |
def create_iter(self):
|
216 |
if self.force_shutdown:
|
@@ -236,8 +322,14 @@ class MultiprocessIterator(StatefulIterator):
|
|
236 |
# We should only ever one state, which is output at the detection of a stop event
|
237 |
self.state_queue = ctx.Manager().Queue(maxsize=1)
|
238 |
|
|
|
|
|
|
|
239 |
self.stop_iterating_event = ctx.Event()
|
240 |
self.state_dumped_event = ctx.Event()
|
|
|
|
|
|
|
241 |
|
242 |
self.producer = mp.Process(
|
243 |
name="blt_data_loader",
|
@@ -245,8 +337,12 @@ class MultiprocessIterator(StatefulIterator):
|
|
245 |
args=(
|
246 |
self.batch_queue,
|
247 |
self.state_queue,
|
|
|
248 |
self.stop_iterating_event,
|
249 |
self.state_dumped_event,
|
|
|
|
|
|
|
250 |
self.base_iterator.get_state(),
|
251 |
),
|
252 |
)
|
|
|
2 |
import json
|
3 |
import logging
|
4 |
import multiprocessing as mp
|
5 |
+
from enum import Enum
|
6 |
from multiprocessing.synchronize import Event as EventClass
|
7 |
from queue import Empty, Full
|
8 |
|
|
|
20 |
logger = logging.getLogger()
|
21 |
|
22 |
|
23 |
+
class PersistType(str, Enum):
|
24 |
+
EXACT = "exact"
|
25 |
+
APPROXIMATE = "approximate"
|
26 |
+
|
27 |
+
|
28 |
class MultiprocessIteratorState(PydanticIteratorState):
|
29 |
model_config = ConfigDict(extra="forbid")
|
30 |
base_iterator_state: PackingIteratorState
|
31 |
n_batches_to_prefetch: int
|
32 |
serialized_prefetch_buffer: str
|
33 |
+
persist_type: PersistType
|
34 |
|
35 |
def build(self):
|
36 |
base_iterator = self.base_iterator_state.build()
|
|
|
40 |
base_iterator,
|
41 |
n_batches_to_prefetch=self.n_batches_to_prefetch,
|
42 |
prefetch_buffer=prefetch_buffer,
|
43 |
+
persist_type=self.persist_type,
|
44 |
)
|
45 |
|
46 |
|
47 |
def start_work_from_state(
|
48 |
batch_queue: mp.Queue,
|
49 |
state_queue: mp.Queue,
|
50 |
+
approximate_state_queue: mp.Queue,
|
51 |
stop_event: EventClass,
|
52 |
state_dumped_event: EventClass,
|
53 |
+
trigger_approximate_send_state_event: EventClass,
|
54 |
+
sent_approximate_state_event: EventClass,
|
55 |
+
received_approximate_state_event: EventClass,
|
56 |
state: IteratorState,
|
57 |
):
|
58 |
logging.info("Worker thread: Starting base_iterator work")
|
|
|
61 |
for item in iterator:
|
62 |
while not stop_event.is_set():
|
63 |
try:
|
64 |
+
if trigger_approximate_send_state_event.is_set():
|
65 |
+
logger.info("WT: trigger_approximate_send ack")
|
66 |
+
# Since this can be triggered again (but only after the state is received on mp),
|
67 |
+
# we should cleanup as soon as possible.
|
68 |
+
trigger_approximate_send_state_event.clear()
|
69 |
+
logging.info("WT: Computing approximate state")
|
70 |
+
approximate_state = stateful_iterator.get_state()
|
71 |
+
# At this state, there should always be exactly 1 slot.
|
72 |
+
# Blocking here would be a bug.
|
73 |
+
logger.info("WT: Attempting to send approximate state")
|
74 |
+
approximate_state_queue.put(
|
75 |
+
approximate_state, block=True, timeout=None
|
76 |
+
)
|
77 |
+
sent_approximate_state_event.set()
|
78 |
+
logger.info("WT: Approximate state sent")
|
79 |
+
# Same here, clear events as we no longer need them.
|
80 |
+
received_approximate_state_event.wait()
|
81 |
+
received_approximate_state_event.clear()
|
82 |
+
logger.info("WT: State received by MT, resuming batch iteration")
|
83 |
# Attempt to put on queue or timeout to try again (maybe main thread is busy)
|
84 |
batch_queue.put(item, timeout=0.1)
|
85 |
# On success, stop trying
|
|
|
89 |
if stop_event.is_set():
|
90 |
# Signal the end of output, this ensures that even if the queue takes a while to
|
91 |
# buffer, that the main thread receives everything (and tosses this fake batch)
|
92 |
+
logging.info(
|
93 |
"Worker thread: Stop event detected, outputting is_final=True batch"
|
94 |
)
|
95 |
+
logging.info("Worker thread: batch_queue full=%s", batch_queue.full())
|
96 |
batch_queue.put(
|
97 |
Batch(
|
98 |
x=np.zeros((1, 1)),
|
|
|
103 |
ngram_ids=None,
|
104 |
)
|
105 |
)
|
106 |
+
logging.info(
|
107 |
"Worker thread: is_final=True batch put in queue, breaking from loop."
|
108 |
)
|
109 |
break
|
110 |
|
111 |
try:
|
112 |
+
logging.info("Worker thread: outputting state")
|
113 |
state_queue.put(stateful_iterator.get_state(), timeout=1)
|
114 |
+
logging.info("Worker thread: state dump complete")
|
115 |
state_dumped_event.set()
|
116 |
+
logging.info("Worker thread: set state_dump_event")
|
117 |
except Full:
|
118 |
raise ValueError(
|
119 |
"Attempted to dump state into the state queue, but it was full"
|
120 |
)
|
121 |
|
122 |
|
123 |
+
FETCH_STATE_TIMEOUT = 120
|
124 |
+
|
125 |
+
|
126 |
class MultiprocessIterator(StatefulIterator):
|
127 |
"""
|
128 |
Design sketch of the multiprocess iterator:
|
|
|
158 |
base_iterator: StatefulIterator,
|
159 |
*,
|
160 |
n_batches_to_prefetch: int,
|
161 |
+
prefetch_buffer: list | None = None,
|
162 |
+
persist_type: PersistType = PersistType.EXACT,
|
163 |
):
|
164 |
self.base_iterator = base_iterator
|
165 |
self.n_batches_to_prefetch = n_batches_to_prefetch
|
166 |
+
self.persist_type = persist_type
|
167 |
if prefetch_buffer is None:
|
168 |
prefetch_buffer = []
|
169 |
self.prefetch_buffer = prefetch_buffer
|
170 |
self.batch_queue = None
|
171 |
self.state_queue = None
|
172 |
+
self.approximate_state_queue = None
|
173 |
self.producer = None
|
174 |
self.stop_iterating_event = None
|
175 |
self.state_dumped_event = None
|
176 |
+
self.trigger_approximate_send_state_event = None
|
177 |
+
self.sent_approximate_state_event = None
|
178 |
+
self.received_approximate_state_event = None
|
179 |
self.force_shutdown = False
|
180 |
|
181 |
def shutdown(self):
|
|
|
184 |
self.producer.kill()
|
185 |
self.force_shutdown = True
|
186 |
|
187 |
+
def _get_state_exact(self):
|
188 |
+
logging.info("Main thread: Sending stop iteration event")
|
189 |
+
self.stop_iterating_event.set()
|
190 |
+
logging.info(
|
191 |
+
"Main thread: Emptying the batch_queue until batch.is_final=True is found."
|
192 |
+
)
|
193 |
+
self.prefetch_buffer = []
|
194 |
+
final_batch_received = False
|
195 |
+
while True:
|
196 |
+
try:
|
197 |
+
batch = self.batch_queue.get(timeout=1)
|
198 |
+
if batch.is_final:
|
199 |
+
logging.info(
|
200 |
+
"Main thread: is_final=True batch found, stopping fetch from batch_queue"
|
201 |
+
)
|
202 |
+
final_batch_received = True
|
203 |
+
break
|
204 |
+
self.prefetch_buffer.append(batch)
|
205 |
+
except Empty:
|
206 |
+
logging.warning("Main thread: batch_queue is abnormally empty")
|
207 |
+
assert final_batch_received
|
208 |
+
|
209 |
+
logging.info("Main thread: Waiting for state_dumped event")
|
210 |
+
self.state_dumped_event.wait()
|
211 |
+
|
212 |
+
try:
|
213 |
+
logging.info(
|
214 |
+
"Main thread: state_dumped_event received, waiting for state from queue"
|
215 |
+
)
|
216 |
+
base_iterator_state = self.state_queue.get(timeout=FETCH_STATE_TIMEOUT)
|
217 |
+
logging.info("Main thread: received state from queue")
|
218 |
+
assert isinstance(base_iterator_state, IteratorState)
|
219 |
+
except Empty:
|
220 |
+
raise ValueError(
|
221 |
+
"Attempted to get the state, but it was unexpectantly missing"
|
222 |
+
)
|
223 |
+
|
224 |
+
self.base_iterator = base_iterator_state.build()
|
225 |
+
self.producer.close()
|
226 |
+
self.producer = None
|
227 |
+
self.batch_queue = None
|
228 |
+
self.state_queue = None
|
229 |
+
self.approximate_state_queue = None
|
230 |
+
self.stop_iterating_event = None
|
231 |
+
self.state_dumped_event = None
|
232 |
+
self.trigger_approximate_send_state_event = None
|
233 |
+
self.sent_approximate_state_event = None
|
234 |
+
self.received_approximate_state_event = None
|
235 |
+
|
236 |
+
return MultiprocessIteratorState(
|
237 |
+
base_iterator_state=self.base_iterator.get_state(),
|
238 |
+
n_batches_to_prefetch=self.n_batches_to_prefetch,
|
239 |
+
serialized_prefetch_buffer=json.dumps(
|
240 |
+
[b.to_python_dict() for b in self.prefetch_buffer]
|
241 |
+
),
|
242 |
+
persist_type=self.persist_type,
|
243 |
+
)
|
244 |
+
|
245 |
+
def _get_state_approximate(self):
|
246 |
+
logging.info("MT: Sending approximate get_state request")
|
247 |
+
self.trigger_approximate_send_state_event.set()
|
248 |
+
logging.info("MT: Waiting for sent_approximate_state_event")
|
249 |
+
self.sent_approximate_state_event.wait()
|
250 |
+
logging.info("MT: sent_approximate_state_event ack")
|
251 |
+
try:
|
252 |
+
logging.info("MT: waiting for approximate state in queue")
|
253 |
+
base_iterator_state = self.approximate_state_queue.get(
|
254 |
+
timeout=FETCH_STATE_TIMEOUT
|
255 |
+
)
|
256 |
+
logging.info("MT: approximate state received")
|
257 |
+
assert isinstance(base_iterator_state, IteratorState)
|
258 |
+
assert self.approximate_state_queue.empty()
|
259 |
+
except Empty:
|
260 |
+
raise ValueError(
|
261 |
+
"Attempted to get approximate state, but queue was erroniously empty."
|
262 |
+
)
|
263 |
+
self.received_approximate_state_event.set()
|
264 |
+
return MultiprocessIteratorState(
|
265 |
+
base_iterator_state=base_iterator_state,
|
266 |
+
n_batches_to_prefetch=self.n_batches_to_prefetch,
|
267 |
+
serialized_prefetch_buffer=json.dumps(
|
268 |
+
[b.to_python_dict() for b in self.prefetch_buffer]
|
269 |
+
),
|
270 |
+
persist_type=self.persist_type,
|
271 |
+
)
|
272 |
+
|
273 |
def get_state(self) -> MultiprocessIteratorState:
|
274 |
"""
|
275 |
This is slightly unusual in effectively destroying the current iterator, its necessary
|
|
|
288 |
base_iterator_state=self.base_iterator.get_state(),
|
289 |
n_batches_to_prefetch=self.n_batches_to_prefetch,
|
290 |
serialized_prefetch_buffer=serialized_prefetch_buffer,
|
291 |
+
persist_type=self.persist_type,
|
292 |
)
|
293 |
else:
|
294 |
+
if self.persist_type == PersistType.EXACT:
|
295 |
+
return self._get_state_exact()
|
296 |
+
elif self.persist_type == PersistType.APPROXIMATE:
|
297 |
+
return self._get_state_approximate()
|
298 |
+
else:
|
299 |
+
raise ValueError("invalid persist_type")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
|
301 |
def create_iter(self):
|
302 |
if self.force_shutdown:
|
|
|
322 |
# We should only ever one state, which is output at the detection of a stop event
|
323 |
self.state_queue = ctx.Manager().Queue(maxsize=1)
|
324 |
|
325 |
+
# Similarly, there should only ever be one state in flight due to event signals
|
326 |
+
self.approximate_state_queue = ctx.Manager().Queue(maxsize=1)
|
327 |
+
|
328 |
self.stop_iterating_event = ctx.Event()
|
329 |
self.state_dumped_event = ctx.Event()
|
330 |
+
self.trigger_approximate_send_state_event = ctx.Event()
|
331 |
+
self.sent_approximate_state_event = ctx.Event()
|
332 |
+
self.received_approximate_state_event = ctx.Event()
|
333 |
|
334 |
self.producer = mp.Process(
|
335 |
name="blt_data_loader",
|
|
|
337 |
args=(
|
338 |
self.batch_queue,
|
339 |
self.state_queue,
|
340 |
+
self.approximate_state_queue,
|
341 |
self.stop_iterating_event,
|
342 |
self.state_dumped_event,
|
343 |
+
self.trigger_approximate_send_state_event,
|
344 |
+
self.sent_approximate_state_event,
|
345 |
+
self.received_approximate_state_event,
|
346 |
self.base_iterator.get_state(),
|
347 |
),
|
348 |
)
|
bytelatent/train.py
CHANGED
@@ -31,6 +31,7 @@ from bytelatent.data.iterators.abstract_iterator import get_state_and_refresh
|
|
31 |
from bytelatent.data.iterators.multiprocess_iterator import (
|
32 |
MultiprocessIterator,
|
33 |
MultiprocessIteratorState,
|
|
|
34 |
)
|
35 |
from bytelatent.data.iterators.packing_iterator import PackingIteratorState
|
36 |
from bytelatent.distributed import (
|
@@ -712,9 +713,15 @@ def train(args: TrainArgs):
|
|
712 |
if every_n_steps(
|
713 |
train_state, args.checkpoint.dump.every, acc_step=0
|
714 |
) or every_n_steps(train_state, args.checkpoint.eval.every, acc_step=0):
|
715 |
-
|
716 |
-
|
717 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
718 |
saved = checkpoint.save(
|
719 |
model,
|
720 |
optimizer,
|
@@ -756,9 +763,16 @@ def train(args: TrainArgs):
|
|
756 |
|
757 |
if preemption_flag["flag"]:
|
758 |
if not saved:
|
759 |
-
|
760 |
-
|
761 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
762 |
checkpoint.save(
|
763 |
model,
|
764 |
optimizer,
|
@@ -769,21 +783,27 @@ def train(args: TrainArgs):
|
|
769 |
requeue_slurm_job()
|
770 |
sys.exit(0)
|
771 |
|
772 |
-
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
787 |
|
788 |
|
789 |
def main():
|
|
|
31 |
from bytelatent.data.iterators.multiprocess_iterator import (
|
32 |
MultiprocessIterator,
|
33 |
MultiprocessIteratorState,
|
34 |
+
PersistType,
|
35 |
)
|
36 |
from bytelatent.data.iterators.packing_iterator import PackingIteratorState
|
37 |
from bytelatent.distributed import (
|
|
|
713 |
if every_n_steps(
|
714 |
train_state, args.checkpoint.dump.every, acc_step=0
|
715 |
) or every_n_steps(train_state, args.checkpoint.eval.every, acc_step=0):
|
716 |
+
if (
|
717 |
+
args.data.load_async
|
718 |
+
and args.data.async_persist_type == PersistType.EXACT
|
719 |
+
):
|
720 |
+
train_state.data_loader_state, data_loader, batch_iterator = (
|
721 |
+
get_state_and_refresh(data_loader)
|
722 |
+
)
|
723 |
+
else:
|
724 |
+
train_state.data_loader_state = data_loader.get_state()
|
725 |
saved = checkpoint.save(
|
726 |
model,
|
727 |
optimizer,
|
|
|
763 |
|
764 |
if preemption_flag["flag"]:
|
765 |
if not saved:
|
766 |
+
if (
|
767 |
+
args.data.load_async
|
768 |
+
and args.data.async_persist_type == PersistType.EXACT
|
769 |
+
):
|
770 |
+
train_state.data_loader_state, data_loader, batch_iterator = (
|
771 |
+
get_state_and_refresh(data_loader)
|
772 |
+
)
|
773 |
+
else:
|
774 |
+
train_state.data_loader_state = data_loader.get_state()
|
775 |
+
|
776 |
checkpoint.save(
|
777 |
model,
|
778 |
optimizer,
|
|
|
783 |
requeue_slurm_job()
|
784 |
sys.exit(0)
|
785 |
|
786 |
+
if not saved:
|
787 |
+
if (
|
788 |
+
args.data.load_async
|
789 |
+
and args.data.async_persist_type == PersistType.EXACT
|
790 |
+
):
|
791 |
+
train_state.data_loader_state, data_loader, batch_iterator = (
|
792 |
+
get_state_and_refresh(data_loader)
|
793 |
+
)
|
794 |
+
else:
|
795 |
+
train_state.data_loader_state = data_loader.get_state()
|
796 |
+
checkpoint.save(
|
797 |
+
model,
|
798 |
+
optimizer,
|
799 |
+
train_state,
|
800 |
+
args,
|
801 |
+
device_mesh=world_mesh,
|
802 |
+
)
|
803 |
+
if isinstance(data_loader, MultiprocessIterator):
|
804 |
+
logger.info("Closing MP iterator before exiting")
|
805 |
+
data_loader.shutdown()
|
806 |
+
gc.collect()
|
807 |
|
808 |
|
809 |
def main():
|