Spaces:
Running
on
Zero
Running
on
Zero
Add rope fp32 (#43)
Browse files* Log model
* Add flag for rope outer in fp32
---------
Co-authored-by: Srini Iyer <sviyer@meta.com>
- bytelatent/base_transformer.py +29 -4
- bytelatent/model/blt.py +3 -5
- bytelatent/model/local_models.py +1 -0
- bytelatent/train.py +1 -0
bytelatent/base_transformer.py
CHANGED
@@ -45,6 +45,7 @@ class BaseTransformerArgs(BaseModel):
|
|
45 |
norm_eps: float = 1e-5
|
46 |
|
47 |
rope_theta: float = 10000.0
|
|
|
48 |
|
49 |
init_base_std: float | None = None
|
50 |
init_std_factor: InitStdFactor = InitStdFactor.DISABLED
|
@@ -78,7 +79,12 @@ def repeat_kv(x: torch.Tensor, n_rep: int, dim: int) -> torch.Tensor:
|
|
78 |
)
|
79 |
|
80 |
|
81 |
-
def precompute_freqs_cis(
|
|
|
|
|
|
|
|
|
|
|
82 |
"""
|
83 |
Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
|
84 |
|
@@ -96,6 +102,9 @@ def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
|
|
96 |
"""
|
97 |
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
98 |
t = torch.arange(end, device=freqs.device)
|
|
|
|
|
|
|
99 |
freqs = torch.outer(t, freqs).float()
|
100 |
|
101 |
cos, sin = freqs.cos(), freqs.sin()
|
@@ -232,22 +241,37 @@ class RotaryEmbedding(torch.nn.Module):
|
|
232 |
RotaryEmbedding Module
|
233 |
"""
|
234 |
|
235 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
super().__init__()
|
237 |
|
238 |
self.theta = theta
|
239 |
self.head_dim = head_dim
|
240 |
self.max_seqlen = max_seqlen
|
|
|
241 |
|
242 |
self.register_buffer(
|
243 |
"freqs_cis",
|
244 |
-
precompute_freqs_cis(
|
|
|
|
|
|
|
|
|
|
|
245 |
persistent=False,
|
246 |
)
|
247 |
|
248 |
def reset_parameters(self):
|
249 |
self.freqs_cis[...] = precompute_freqs_cis(
|
250 |
-
dim=self.head_dim,
|
|
|
|
|
|
|
251 |
)
|
252 |
|
253 |
def forward(
|
@@ -577,6 +601,7 @@ class BaseTransformer(nn.Module):
|
|
577 |
theta=args.rope_theta,
|
578 |
head_dim=args.head_dim or args.dim // args.n_heads,
|
579 |
max_seqlen=args.max_seqlen,
|
|
|
580 |
)
|
581 |
self.eos_id = args.eos_id
|
582 |
|
|
|
45 |
norm_eps: float = 1e-5
|
46 |
|
47 |
rope_theta: float = 10000.0
|
48 |
+
rope_use_fp32_in_outer_product: bool = False
|
49 |
|
50 |
init_base_std: float | None = None
|
51 |
init_std_factor: InitStdFactor = InitStdFactor.DISABLED
|
|
|
79 |
)
|
80 |
|
81 |
|
82 |
+
def precompute_freqs_cis(
|
83 |
+
dim: int,
|
84 |
+
end: int,
|
85 |
+
theta: float = 10000.0,
|
86 |
+
rope_use_fp32_in_outer_product: bool = False,
|
87 |
+
):
|
88 |
"""
|
89 |
Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
|
90 |
|
|
|
102 |
"""
|
103 |
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
104 |
t = torch.arange(end, device=freqs.device)
|
105 |
+
if rope_use_fp32_in_outer_product:
|
106 |
+
t = t.to(torch.float32)
|
107 |
+
|
108 |
freqs = torch.outer(t, freqs).float()
|
109 |
|
110 |
cos, sin = freqs.cos(), freqs.sin()
|
|
|
241 |
RotaryEmbedding Module
|
242 |
"""
|
243 |
|
244 |
+
def __init__(
|
245 |
+
self,
|
246 |
+
theta: float,
|
247 |
+
head_dim: int,
|
248 |
+
max_seqlen: int = 1024,
|
249 |
+
rope_use_fp32_in_outer_product: bool = False,
|
250 |
+
):
|
251 |
super().__init__()
|
252 |
|
253 |
self.theta = theta
|
254 |
self.head_dim = head_dim
|
255 |
self.max_seqlen = max_seqlen
|
256 |
+
self.rope_use_fp32_in_outer_product = rope_use_fp32_in_outer_product
|
257 |
|
258 |
self.register_buffer(
|
259 |
"freqs_cis",
|
260 |
+
precompute_freqs_cis(
|
261 |
+
dim=head_dim,
|
262 |
+
end=max_seqlen,
|
263 |
+
theta=theta,
|
264 |
+
rope_use_fp32_in_outer_product=self.rope_use_fp32_in_outer_product,
|
265 |
+
),
|
266 |
persistent=False,
|
267 |
)
|
268 |
|
269 |
def reset_parameters(self):
|
270 |
self.freqs_cis[...] = precompute_freqs_cis(
|
271 |
+
dim=self.head_dim,
|
272 |
+
end=self.max_seqlen,
|
273 |
+
theta=self.theta,
|
274 |
+
rope_use_fp32_in_outer_product=self.rope_use_fp32_in_outer_product,
|
275 |
)
|
276 |
|
277 |
def forward(
|
|
|
601 |
theta=args.rope_theta,
|
602 |
head_dim=args.head_dim or args.dim // args.n_heads,
|
603 |
max_seqlen=args.max_seqlen,
|
604 |
+
rope_use_fp32_in_outer_product=args.rope_use_fp32_in_outer_product,
|
605 |
)
|
606 |
self.eos_id = args.eos_id
|
607 |
|
bytelatent/model/blt.py
CHANGED
@@ -414,7 +414,7 @@ class ByteLatentTransformerArgs(BaseTransformerArgs):
|
|
414 |
patch_in_forward: bool = False
|
415 |
|
416 |
# Architecture and dimensions
|
417 |
-
dim_token: int =
|
418 |
dim_global: int = 512
|
419 |
dim_local_decoder: int = 512
|
420 |
dim_local_encoder: int = 512
|
@@ -523,10 +523,6 @@ class ByteLatentTransformerArgs(BaseTransformerArgs):
|
|
523 |
use_fsdp: bool = True
|
524 |
attn_to_keep: str = "all"
|
525 |
|
526 |
-
# RoPE parameters
|
527 |
-
rope_theta: float = 10000.0
|
528 |
-
rope_use_fp32_in_outer_product: bool = False
|
529 |
-
|
530 |
# Parameter mixing
|
531 |
pm_size: int = 0
|
532 |
|
@@ -619,6 +615,7 @@ def create_local_encoder(args: ByteLatentTransformerArgs) -> LocalEncoder:
|
|
619 |
sliding_window=args.local_attention_window_len,
|
620 |
use_rope=args.use_rope,
|
621 |
rope_theta=args.rope_theta,
|
|
|
622 |
init_base_std=args.init_base_std,
|
623 |
init_std_factor=args.init_std_factor,
|
624 |
n_kv_heads=args.n_kv_heads,
|
@@ -661,6 +658,7 @@ def create_local_decoder(args: ByteLatentTransformerArgs) -> LocalDecoder:
|
|
661 |
sliding_window=args.local_attention_window_len,
|
662 |
use_rope=args.use_rope,
|
663 |
rope_theta=args.rope_theta,
|
|
|
664 |
init_base_std=args.init_base_std,
|
665 |
init_std_factor=args.init_std_factor,
|
666 |
n_kv_heads=args.n_kv_heads,
|
|
|
414 |
patch_in_forward: bool = False
|
415 |
|
416 |
# Architecture and dimensions
|
417 |
+
dim_token: int | None = None
|
418 |
dim_global: int = 512
|
419 |
dim_local_decoder: int = 512
|
420 |
dim_local_encoder: int = 512
|
|
|
523 |
use_fsdp: bool = True
|
524 |
attn_to_keep: str = "all"
|
525 |
|
|
|
|
|
|
|
|
|
526 |
# Parameter mixing
|
527 |
pm_size: int = 0
|
528 |
|
|
|
615 |
sliding_window=args.local_attention_window_len,
|
616 |
use_rope=args.use_rope,
|
617 |
rope_theta=args.rope_theta,
|
618 |
+
rope_use_fp32_in_outer_product=args.rope_use_fp32_in_outer_product,
|
619 |
init_base_std=args.init_base_std,
|
620 |
init_std_factor=args.init_std_factor,
|
621 |
n_kv_heads=args.n_kv_heads,
|
|
|
658 |
sliding_window=args.local_attention_window_len,
|
659 |
use_rope=args.use_rope,
|
660 |
rope_theta=args.rope_theta,
|
661 |
+
rope_use_fp32_in_outer_product=args.rope_use_fp32_in_outer_product,
|
662 |
init_base_std=args.init_base_std,
|
663 |
init_std_factor=args.init_std_factor,
|
664 |
n_kv_heads=args.n_kv_heads,
|
bytelatent/model/local_models.py
CHANGED
@@ -86,6 +86,7 @@ class LocalModelBase(nn.Module):
|
|
86 |
theta=args.rope_theta,
|
87 |
head_dim=args.head_dim or args.dim // args.n_heads,
|
88 |
max_seqlen=args.max_seqlen,
|
|
|
89 |
)
|
90 |
self.pos_embeddings = None
|
91 |
|
|
|
86 |
theta=args.rope_theta,
|
87 |
head_dim=args.head_dim or args.dim // args.n_heads,
|
88 |
max_seqlen=args.max_seqlen,
|
89 |
+
rope_use_fp32_in_outer_product=args.rope_use_fp32_in_outer_product,
|
90 |
)
|
91 |
self.pos_embeddings = None
|
92 |
|
bytelatent/train.py
CHANGED
@@ -325,6 +325,7 @@ def train(args: TrainArgs):
|
|
325 |
|
326 |
# log model size
|
327 |
|
|
|
328 |
logger.info(f"Model size: {model_param_count:,} total parameters")
|
329 |
|
330 |
gpu_memory_monitor = GPUMemoryMonitor("cuda")
|
|
|
325 |
|
326 |
# log model size
|
327 |
|
328 |
+
logger.info(model)
|
329 |
logger.info(f"Model size: {model_param_count:,} total parameters")
|
330 |
|
331 |
gpu_memory_monitor = GPUMemoryMonitor("cuda")
|