Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
import logging | |
import os | |
try: | |
from sentencepiece import SentencePieceProcessor | |
has_sp = True | |
except ImportError: | |
has_sp = False | |
from bytelatent.tokenizers.abstract_tokenizer import Tokenizer | |
logger = logging.getLogger(__name__) | |
class SentencePieceTokenizer(Tokenizer): | |
def __init__( | |
self, model_path: str, add_bos: bool = True, add_eos: bool = True | |
) -> None: | |
assert os.path.isfile(model_path), model_path | |
self.sp_model = SentencePieceProcessor(model_file=model_path) | |
logger.info(f"Reloaded SentencePiece model from {model_path}") | |
# BOS / EOS token IDs | |
self.n_words: int = self.sp_model.vocab_size() | |
self.bos_id: int = self.sp_model.bos_id() | |
self.eos_id: int = self.sp_model.eos_id() | |
self.pad_id: int = self.sp_model.pad_id() | |
self.add_bos = add_bos | |
self.add_eos = add_eos | |
logger.info( | |
f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}" | |
) | |
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size() | |
def get_vocab_size(self) -> int: | |
return self.n_words | |
def encode(self, s: str, add_bos: bool | None = None, add_eos: bool | None = None): | |
if add_bos is None: | |
add_bos = self.add_bos | |
if add_eos is None: | |
add_eos = self.add_eos | |
assert type(s) is str | |
tokens = ( | |
[self.bos_id] * add_bos + self.sp_model.encode(s) + [self.eos_id] * add_eos | |
) | |
return tokens | |
def decode(self, tokens: list[int]): | |
return self.sp_model.decode(tokens) | |
def get_token_offsets( | |
self, text: str, tokens: list[int] | None = None | |
) -> tuple[list[str], list[int]]: | |
pieces = self.sp_model.encode_as_immutable_proto(text).pieces | |
substrs = [p.surface for p in pieces] | |
offsets = [p.begin for p in pieces] | |
return substrs, offsets | |