Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| import logging | |
| from typing import Optional, Tuple, Union | |
| import torch | |
| from torch import nn | |
| from torch.distributed._tensor import Replicate, Shard | |
| from torch.distributed.tensor.parallel import ( | |
| ColwiseParallel, | |
| PrepareModuleInput, | |
| RowwiseParallel, | |
| SequenceParallel, | |
| parallelize_module, | |
| ) | |
| from torch.nn.attention.flex_attention import BlockMask, create_block_mask | |
| from xformers.ops import AttentionBias | |
| from bytelatent.base_transformer import ( | |
| BaseTransformer, | |
| BaseTransformerArgs, | |
| cross_entropy, | |
| ) | |
| from bytelatent.model.utils import create_causal_mask | |
| logger = logging.getLogger() | |
| try: | |
| from apex.normalization.fused_layer_norm import FusedRMSNorm | |
| RMSNorm = FusedRMSNorm | |
| except (ImportError, ModuleNotFoundError): | |
| logging.debug("Apex not found. Using nn.RMSNorm") | |
| RMSNorm = nn.RMSNorm | |
| def attention_flops_per_token(n_layers, seq_len, dim, causal): | |
| # Formula from https://github.com/Dao-AILab/flash-attention/blob/main/benchmarks/benchmark_flash_attention.py#L27-L30 | |
| return 3.5 * (4 * n_layers * seq_len * dim // (2 if causal else 1)) | |
| def get_num_flop_per_token( | |
| num_non_embed_params: int, n_layers: int, dim: int, seq_len: int | |
| ) -> int: | |
| return 6 * num_non_embed_params + attention_flops_per_token( | |
| n_layers, seq_len, dim, True | |
| ) | |
| def causal_mask(b, h, q_idx, kv_idx): | |
| return q_idx >= kv_idx | |
| class LMTransformerArgs(BaseTransformerArgs): | |
| seed: int = 42 | |
| vocab_size: int = -1 | |
| weight_tying: bool = False | |
| sliding_window: int | None = None | |
| class LMTransformer(BaseTransformer): | |
| def __init__(self, args: LMTransformerArgs): | |
| super().__init__(args) | |
| self.weight_tying = args.weight_tying | |
| self.sliding_window = args.sliding_window | |
| assert args.vocab_size > 0 | |
| self.tok_embeddings = torch.nn.Embedding(args.vocab_size, args.dim) | |
| self.norm = RMSNorm(args.dim, eps=args.norm_eps) | |
| self.output = nn.Linear( | |
| args.dim, | |
| args.vocab_size, | |
| bias=False, | |
| ) | |
| if args.weight_tying: | |
| self.output.weight = self.embeddings.tok_embeddings.weight | |
| def forward( | |
| self, | |
| token_values: torch.Tensor, | |
| target: Optional[torch.Tensor] = None, | |
| tok_idx: Optional[torch.Tensor] = None, | |
| mask: Optional[Union[BlockMask, AttentionBias, torch.Tensor, str]] = None, | |
| attn_impl: str | None = None, | |
| ): | |
| if attn_impl is None: | |
| attn_impl = self.attn_impl | |
| bsz, seqlen = token_values.shape | |
| h = self.tok_embeddings(token_values) | |
| mask = ( | |
| mask | |
| if mask is not None | |
| else create_causal_mask( | |
| seqlen, | |
| attn_impl, | |
| self.attn_bias_type, | |
| sliding_window=self.sliding_window, | |
| tokens=token_values, | |
| eos_id=self.eos_id, | |
| ) | |
| ) | |
| h = super().forward(h, tok_idx=tok_idx, mask=mask, attn_impl=attn_impl) | |
| logits = self.output(self.norm(h)) | |
| if target is not None: | |
| return cross_entropy(logits, target) | |
| else: | |
| return logits | |
| def reset_parameters(self, init_std=None): | |
| self.norm.reset_parameters() | |
| def init_weights(self): | |
| self.reset_parameters() | |
| init_std = self.dim ** (-0.5) | |
| nn.init.trunc_normal_( | |
| self.tok_embeddings.weight, | |
| mean=0.0, | |
| std=init_std, | |
| a=-3 * init_std, | |
| b=3 * init_std, | |
| ) | |
| super().init_weights() | |
| if not self.weight_tying: | |
| nn.init.trunc_normal_( | |
| self.output.weight, | |
| mean=0.0, | |
| std=init_std, | |
| a=-3 * init_std, | |
| b=3 * init_std, | |
| ) | |
| # Optional policy for activation checkpointing. With None, we stick to the default (defined distributed.py: default_no_recompute_ops) | |
| def get_no_recompute_ops(): | |
| return None | |
| # Optional and only used for fully shard options (fsdp) is choose. Highly recommanded for large models | |
| def build_fsdp_grouping_plan(model_args: LMTransformerArgs): | |
| group_plan: Tuple[int, bool] = [] | |
| if isinstance(model_args, LMTransformerArgs): | |
| group_plan.append(("tok_embeddings", False)) | |
| for i in range(model_args.n_layers): | |
| group_plan.append((f"layers.{i}", False)) | |
| group_plan.append(("output", True)) | |
| else: | |
| for i in range(model_args.n_layers_local_encoder): | |
| group_plan.append((f"local_encoder.layers.{i}", False)) | |
| group_plan.append((f"local_encoder.cross_attn_layers.{i}", False)) | |
| for i in range(model_args.n_layers_local_decoder): | |
| group_plan.append((f"local_decoder.layers.{i}", False)) | |
| group_plan.append((f"local_decoder.cross_attn_layers.{i}", False)) | |
| for i in range(model_args.n_layers_global): | |
| group_plan.append((f"global_transformer.layers.{i}", False)) | |
| for i in range(len(model_args.encoder_hash_byte_group_size)): | |
| group_plan.append((f"encoder_hash_tok_embedding.{i}", False)) | |
| return group_plan | |
| # Optional and only used for model/tensor parallelism when tp_size > 1 | |
| def tp_parallelize(model, tp_mesh, model_args: LMTransformerArgs, distributed_args): | |
| assert model_args.dim % distributed_args.tp_size == 0 | |
| assert model_args.vocab_size % distributed_args.tp_size == 0 | |
| assert model_args.n_heads % distributed_args.tp_size == 0 | |
| assert (model_args.n_kv_heads or 0) % distributed_args.tp_size == 0 | |
| assert model_args.n_heads % (model_args.n_kv_heads or 1) == 0 | |
| # Embedding layer tp | |
| main_plan = {} | |
| main_plan["tok_embeddings"] = ColwiseParallel( | |
| input_layouts=Replicate(), output_layouts=Shard(1) | |
| ) | |
| main_plan["norm"] = SequenceParallel() | |
| main_plan["output"] = ColwiseParallel( | |
| input_layouts=Shard(1), output_layouts=Replicate() | |
| ) | |
| parallelize_module( | |
| model, | |
| tp_mesh, | |
| main_plan, | |
| ) | |
| # Attention layers tp | |
| for layer in model.layers: | |
| layer_plan = {} | |
| layer_plan["attention"] = PrepareModuleInput( | |
| input_layouts=(Shard(1), None), | |
| desired_input_layouts=(Replicate(), None), | |
| ) | |
| layer_plan["attention_norm"] = SequenceParallel() | |
| layer_plan["attention.wq"] = ColwiseParallel() | |
| layer_plan["attention.wk"] = ColwiseParallel() | |
| layer_plan["attention.wv"] = ColwiseParallel() | |
| layer_plan["attention.wo"] = RowwiseParallel(output_layouts=Shard(1)) | |
| # Feedforward layers tp | |
| layer_plan["feed_forward"] = PrepareModuleInput( | |
| input_layouts=(Shard(1),), | |
| desired_input_layouts=(Replicate(),), | |
| ) | |
| layer_plan["ffn_norm"] = SequenceParallel() | |
| layer_plan["feed_forward.w1"] = ColwiseParallel() | |
| layer_plan["feed_forward.w3"] = ColwiseParallel() | |
| layer_plan["feed_forward.w2"] = RowwiseParallel(output_layouts=Shard(1)) | |
| parallelize_module( | |
| layer, | |
| tp_mesh, | |
| layer_plan, | |
| ) | |
| # Adjusting the number of heads and kv heads according to the tp size | |
| attn_layer = layer.attention | |
| attn_layer.n_heads = attn_layer.n_heads // distributed_args.tp_size | |
| attn_layer.n_kv_heads = attn_layer.n_kv_heads // distributed_args.tp_size | |