Spaces:
Runtime error
Runtime error
import gradio as gr | |
import tensorflow as tf | |
import tensorflow_hub as hub | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import PIL.Image | |
hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2') | |
def tensor_to_image(tensor): | |
tensor = tensor*255 | |
tensor = np.array(tensor, dtype=np.uint8) | |
if np.ndim(tensor)>3: | |
assert tensor.shape[0] == 1 | |
tensor = tensor[0] | |
return PIL.Image.fromarray(tensor) | |
def stylize(content_image, style_image): | |
content_image = content_image.astype(np.float32)[np.newaxis, ...] / 255. | |
style_image = style_image.astype(np.float32)[np.newaxis, ...] / 255. | |
stylized_image = hub_model(tf.constant(content_image), tf.constant(style_image))[0] | |
return tensor_to_image(stylized_image) | |
content_examples =[["example_paris.jpeg"], ["example_vangogh.jpeg"]] | |
style_examples = [["example_aristotle.jpeg"], ["example_dali.jpeg"]] | |
title = "Fast Neural Style Transfer using TF-Hub" | |
description = "Demo for neural style transfer using the pretrained Arbitrary Image Stylization model from TensorFlow Hub." | |
inputs = gr.inputs.Image(label="Content Image", source=["upload", "webcam"]) | |
outputs = gr.outputs.Image(label="Style Image") | |
iface = gr.Interface(fn=stylize, | |
inputs=["image", "image"], | |
outputs="image", | |
title=title, | |
description=description, | |
examples=[content_examples, style_examples]) | |
iface.launch() |