AntonioHCastro commited on
Commit
ecd9808
·
1 Parent(s): 20e3edd

feat: adicionando o resumo na resposta final

Browse files
_utils/gerar_relatorio_modelo_usuario/EnhancedDocumentSummarizer.py CHANGED
@@ -40,7 +40,7 @@ class EnhancedDocumentSummarizer(DocumentSummarizer):
40
  gpt_temperature,
41
  id_modelo_do_usuario,
42
  prompt_modelo,
43
- reciprocal_rank_fusion,
44
  ):
45
  super().__init__(
46
  openai_api_key,
@@ -62,6 +62,7 @@ class EnhancedDocumentSummarizer(DocumentSummarizer):
62
  self.id_modelo_do_usuario = id_modelo_do_usuario
63
  self.prompt_modelo = prompt_modelo
64
  self.reciprocal_rank_fusion = reciprocal_rank_fusion
 
65
 
66
  def create_enhanced_vector_store(
67
  self, chunks: List[ContextualizedChunk], is_contextualized_chunk
@@ -260,6 +261,8 @@ class EnhancedDocumentSummarizer(DocumentSummarizer):
260
  prompt_gerar_relatorio.format(context="\n\n".join(contexts))
261
  )
262
 
 
 
263
  prompt_gerar_modelo = PromptTemplate(
264
  template=self.prompt_modelo,
265
  input_variables=["context", "modelo_usuario"],
 
40
  gpt_temperature,
41
  id_modelo_do_usuario,
42
  prompt_modelo,
43
+ reciprocal_rank_fusion
44
  ):
45
  super().__init__(
46
  openai_api_key,
 
62
  self.id_modelo_do_usuario = id_modelo_do_usuario
63
  self.prompt_modelo = prompt_modelo
64
  self.reciprocal_rank_fusion = reciprocal_rank_fusion
65
+ self.resumo_gerado = ""
66
 
67
  def create_enhanced_vector_store(
68
  self, chunks: List[ContextualizedChunk], is_contextualized_chunk
 
261
  prompt_gerar_relatorio.format(context="\n\n".join(contexts))
262
  )
263
 
264
+ self.resumo_gerado = relatorio_gerado
265
+
266
  prompt_gerar_modelo = PromptTemplate(
267
  template=self.prompt_modelo,
268
  input_variables=["context", "modelo_usuario"],
_utils/resumo_completo_cursor.py CHANGED
@@ -105,7 +105,7 @@ async def get_llm_summary_answer_by_cursor_complete(
105
  chunks_passados, is_contextualized_chunk
106
  )
107
 
108
- prompt_relatorio_sem_context = """You are a language model specialized in producing concise and well-structured legal case summaries in Portuguese. You will receive a variable `context`, which contains information about a legal case. Your task is to read the `context` carefully and produce a summary report in Portuguese, following the specific format provided below. Do not include any additional comments or reasoning steps in your final answer.
109
  **Instructions**:
110
  1. **Chain of Thought**: Before producing your final answer, you must think through and plan your summary silently, without showing this reasoning in the final output. The final answer must only contain the required formatted report and nothing else.
111
  2. **Reading the Context**: Extract the following information from `context`:
@@ -142,7 +142,7 @@ Não há outras causas interruptivas ou suspensivas da prescrição.
142
  chunk_ids
143
  # , serializer["user_message"]
144
  ,
145
- prompt_relatorio_sem_context,
146
  )
147
 
148
  if not isinstance(structured_summaries, list):
@@ -156,6 +156,10 @@ Não há outras causas interruptivas ou suspensivas da prescrição.
156
  # print(json_output)
157
  texto_completo = ""
158
  print("\n\n\n")
 
 
 
 
159
  print("structured_summaries: ", structured_summaries)
160
  for x in structured_summaries:
161
  texto_completo = texto_completo + x["content"] + "\n"
 
105
  chunks_passados, is_contextualized_chunk
106
  )
107
 
108
+ prompt_resumo_sem_context = """You are a language model specialized in producing concise and well-structured legal case summaries in Portuguese. You will receive a variable `context`, which contains information about a legal case. Your task is to read the `context` carefully and produce a summary report in Portuguese, following the specific format provided below. Do not include any additional comments or reasoning steps in your final answer.
109
  **Instructions**:
110
  1. **Chain of Thought**: Before producing your final answer, you must think through and plan your summary silently, without showing this reasoning in the final output. The final answer must only contain the required formatted report and nothing else.
111
  2. **Reading the Context**: Extract the following information from `context`:
 
142
  chunk_ids
143
  # , serializer["user_message"]
144
  ,
145
+ prompt_resumo_sem_context,
146
  )
147
 
148
  if not isinstance(structured_summaries, list):
 
156
  # print(json_output)
157
  texto_completo = ""
158
  print("\n\n\n")
159
+ print("summarizer.resumo_gerado: ", summarizer.resumo_gerado)
160
+ texto_completo += summarizer.resumo_gerado
161
+ texto_completo += "\n\n"
162
+ print("\n\n\n")
163
  print("structured_summaries: ", structured_summaries)
164
  for x in structured_summaries:
165
  texto_completo = texto_completo + x["content"] + "\n"
example.env ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ DATABASE_PASSWORD=""
2
+ OPENAI_API_KEY=""
3
+ CLAUDE_API_KEY=""
4
+ LANGCHAIN_API_KEY=""
5
+ HUGGINGFACEHUB_API_TOKEN=""
6
+ COHERE_API_KEY=""
7
+ SECRET_KEY=""
8
+ DATABASE_PASSWORD=""
setup/urls.py CHANGED
@@ -31,7 +31,7 @@ urlpatterns = [
31
  path("resumo", ResumoView.as_view(), name="summary-pdf"),
32
  path("resumo/cursor", ResumoSimplesCursorView.as_view(), name="summary-cursor-pdf"),
33
  path(
34
- "gerar-relatorio",
35
  ResumoSimplesCursorCompletoView.as_view(),
36
  name="summary-cursor-completo-pdf",
37
  ),
 
31
  path("resumo", ResumoView.as_view(), name="summary-pdf"),
32
  path("resumo/cursor", ResumoSimplesCursorView.as_view(), name="summary-cursor-pdf"),
33
  path(
34
+ "gerar-documento",
35
  ResumoSimplesCursorCompletoView.as_view(),
36
  name="summary-cursor-completo-pdf",
37
  ),