|
import gradio as gr |
|
import tabulate |
|
import matplotlib.pyplot as plt |
|
import networkx as nx |
|
|
|
from model import Parser |
|
|
|
|
|
parser = Parser() |
|
|
|
def parse(text): |
|
output = parser.parse(text) |
|
|
|
dependency_tree = render_dependency_tree(output["forms"], output["heads"], output["deprels"]) |
|
table = render_table(output["forms"], output["lemmas"], output["upos"], output["xpos"], output["ne"]) |
|
|
|
return dependency_tree, table |
|
|
|
|
|
def render_dependency_tree(words, parents, labels): |
|
fig, ax = plt.subplots(figsize=(32, 16)) |
|
|
|
|
|
G = nx.DiGraph() |
|
|
|
|
|
for i, word in enumerate(words): |
|
G.add_node(i, label=word) |
|
|
|
|
|
for i, (parent, label) in enumerate(zip(parents, labels)): |
|
if parent != 0: |
|
G.add_edge(parent - 1, i, label=label) |
|
|
|
|
|
pos = nx.nx_agraph.graphviz_layout(G, prog='dot') |
|
|
|
|
|
nx.draw(G, pos, ax=ax, with_labels=True, labels=nx.get_node_attributes(G, 'label'), |
|
arrows=True, node_color='#ffffff', node_size=0, node_shape='s', font_size=24, bbox = dict(facecolor="white", pad=10) |
|
) |
|
|
|
|
|
edge_labels = nx.get_edge_attributes(G, 'label') |
|
nx.draw_networkx_edge_labels(G, pos, ax=ax, edge_labels=edge_labels, rotate=False, alpha=0.9, font_size=18) |
|
|
|
return fig |
|
|
|
|
|
description = """ |
|
<div style="text-align: center;"> |
|
<h1>Norsk UD (Bokmål og Nynorsk)</h1> |
|
<p align="center"> |
|
<img src="https://huggingface.co/ltg/norbert3-base/resolve/main/norbert.png" width=6.75%> |
|
</p><p></p> |
|
</div> |
|
""" |
|
|
|
text = """1 President President PROPN NNP Number=Sing 5 nsubj 5:nsubj _ |
|
2 Bush Bush PROPN NNP Number=Sing 1 flat 1:flat _ |
|
3 on on ADP IN _ 4 case 4:case _ |
|
4 Tuesday Tuesday PROPN NNP Number=Sing 5 obl 5:obl:on _ |
|
5 nominated nominate VERB VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 0 root 0:root _ |
|
6 two two NUM CD NumType=Card 7 nummod 7:nummod _ |
|
7 individuals individual NOUN NNS Number=Plur 5 obj 5:obj _ |
|
8 to to PART TO _ 9 mark 9:mark _ |
|
9 replace replace VERB VB VerbForm=Inf 5 advcl 5:advcl:to _ |
|
10 retiring retire VERB VBG VerbForm=Ger 11 amod 11:amod _ |
|
11 jurists jurist NOUN NNS Number=Plur 9 obj 9:obj _ |
|
12 on on ADP IN _ 14 case 14:case _ |
|
13 federal federal ADJ JJ Degree=Pos 14 amod 14:amod _ |
|
14 courts court NOUN NNS Number=Plur 11 nmod 11:nmod:on _ |
|
15 in in ADP IN _ 18 case 18:case _ |
|
16 the the DET DT Definite=Def|PronType=Art 18 det 18:det _ |
|
17 Washington Washington PROPN NNP Number=Sing 18 compound 18:compound _ |
|
18 area area NOUN NN Number=Sing 14 nmod 14:nmod:in SpaceAfter=No |
|
19 . . PUNCT . _ 5 punct 5:punct _""" |
|
|
|
forms = [ |
|
line.split("\t")[1] |
|
for line in text.split("\n") |
|
if line and not line.startswith("#") |
|
] |
|
|
|
lemmas = [ |
|
line.split("\t")[2] |
|
for line in text.split("\n") |
|
if line and not line.startswith("#") |
|
] |
|
|
|
upos = [ |
|
line.split("\t")[3] |
|
for line in text.split("\n") |
|
if line and not line.startswith("#") |
|
] |
|
|
|
xpos = [ |
|
line.split("\t")[4] |
|
for line in text.split("\n") |
|
if line and not line.startswith("#") |
|
] |
|
|
|
feats = [ |
|
line.split("\t")[5] |
|
for line in text.split("\n") |
|
if line and not line.startswith("#") |
|
] |
|
|
|
metadata = [ |
|
line.split("\t")[9] |
|
for line in text.split("\n") |
|
if line and not line.startswith("#") |
|
] |
|
|
|
edges = [ |
|
int(line.split("\t")[6]) |
|
for line in text.split("\n") |
|
if line and not line.startswith("#") |
|
] |
|
|
|
edge_labels = [ |
|
line.split("\t")[7] |
|
for line in text.split("\n") |
|
if line and not line.startswith("#") |
|
] |
|
|
|
def render_table(forms, lemmas, upos, xpos, feats, named_entities): |
|
feats = [[f"*{f.split('=')[0]}:* {f.split('=')[1]}" for f in (feat.split("|")) if '=' in f] for feat in feats] |
|
max_len = max(1, max([len(feat) for feat in feats])) |
|
feats = [feat + [""] * (max_len - len(feat)) for feat in feats] |
|
feats = list(zip(*feats)) |
|
|
|
named_entities = [ |
|
"" if ne == "O" else f"<< {ne.split('-')[1]} >>" if ne.startswith("B") else ne.split('-')[1] if ne.startswith("I") and i - 1 < len(named_entities) and named_entities[i + 1].startswith("I") else f"{ne.split('-')[1]} >>" |
|
for i, ne in enumerate(named_entities) |
|
] |
|
|
|
array = [ |
|
[""] + forms, |
|
["*LEMMAS:*"] + lemmas, |
|
["*UPOS:*"] + upos, |
|
["*XPOS:*"] + xpos, |
|
["*UFEATS:*"] + list(feats[0]), |
|
*([""] + list(row) for row in feats[1:]) |
|
["*NE:*"] + named_entities, |
|
] |
|
|
|
|
|
return {"value": array[1:], "headers": array[0]} |
|
|
|
|
|
custom_css = \ |
|
""" |
|
/* Hide sort buttons at gr.DataFrame */ |
|
.sort-button { |
|
display: none !important; |
|
} |
|
""" |
|
with gr.Blocks(theme='sudeepshouche/minimalist', css=custom_css) as demo: |
|
gr.HTML(description) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1, variant="panel"): |
|
source = gr.Textbox( |
|
label="Input sentence", placeholder="Write a sentende to parse", show_label=False, lines=1, max_lines=5, autofocus=True |
|
) |
|
submit = gr.Button("Submit", variant="primary") |
|
|
|
with gr.Column(scale=1, variant="panel"): |
|
dataset = gr.Dataset(components=[gr.Textbox(visible=False)], |
|
label="Input examples", |
|
samples=[ |
|
["Thomassen er på vei til sin neste gjerning."], |
|
["På toppen av dette kom de metodiske utfordringer."], |
|
["Berntsen har påtatt seg en både viktig og vanskelig oppgave."], |
|
["Ikke bare har det vært et problem, som han selv skriver i forordet, å bli klok på Borten."], |
|
] |
|
) |
|
|
|
table = gr.DataFrame(**render_table(forms, lemmas, upos, xpos, feats, metadata, edges, edge_labels), interactive=False, datatype="markdown") |
|
dependency_plot = gr.Plot(render_dependency_tree(forms, edges, edge_labels), container=False) |
|
|
|
source.submit( |
|
fn=parse, inputs=["source"], outputs=["dependency_plot", "table"], queue=True |
|
) |
|
submit.click( |
|
fn=parse, inputs=["source"], outputs=["dependency_plot", "table"], queue=True |
|
) |
|
dataset.click( |
|
fn=lambda text: text, inputs=["dataset"], outputs=["source"] |
|
).then( |
|
fn=parse, inputs=["source"], outputs=["dependency_plot", "table"], queue=True |
|
) |
|
|
|
|
|
demo.queue(max_size=32, concurrency_count=2) |
|
demo.launch() |
|
|