lt12200028's picture
Create app.py
5573c04
raw
history blame
973 Bytes
import gradio as gr
from transformers import BertTokenizer, TFBertForSequenceClassification
import tensorflow as tf
# Load tokenizer
tokenizer = BertTokenizer.from_pretrained("nlpaueb/bert-base-greek-uncased-v1")
# Load model
model = TFBertForSequenceClassification.from_pretrained('new_emdedding trial')
def check_sarcasm(sentence):
tf_batch = tokenizer(sentence, max_length=128, padding=True, truncation=True, return_tensors='tf')
tf_outputs = model(tf_batch.input_ids, tf_batch.token_type_ids)
tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1)
pred_label = tf.argmax(tf_predictions, axis=1)
if pred_label == 1:
return "Sarcastic"
else:
return "Not sarcastic"
# Create a Gradio interface
iface = gr.Interface(
fn=check_sarcasm,
inputs="text",
outputs="text",
title="Sarcasm Detection",
description="Enter a headline and check if it's sarcastic."
)
# Launch the interface
iface.launch(share=True)