distinct
Browse files- README.md +1 -1
- __pycache__/distinct.cpython-38.pyc +0 -0
- distinct.py +14 -15
- requirements.txt +2 -1
- tests.py +3 -6
README.md
CHANGED
@@ -53,7 +53,7 @@ Downloading builder script: 100%|βββββββββββββββ
|
|
53 |
- **mode** *(string): 'Expectation-Adjusted-Distinct' or 'Distinct' for diversity calculation. If 'Expectation-Adjusted-Distinct', the scores for both modes will be returned. The default value is 'Expectation-Adjusted-Distinct'*
|
54 |
- **vocab_size** *(int): For calculating 'Expectation-Adjusted-Distinct', either vocab_size or dataForVocabCal should not be None. Default value is None*
|
55 |
- **dataForVocabCal** *(list of string): dataForVocabCal for calculating the vocab_size for 'Expectation-Adjusted-Distinct'. Typically, it should be a list of sentences consisting the task dataset. For calculating 'Expectation-Adjusted-Distinct', either vocab_size or dataForVocabCal should not be None. Default value is None*
|
56 |
-
- **tokenizer** *(string or tokenizer class): tokenizer for splitting sentences into words. Default value is
|
57 |
|
58 |
### Output Values
|
59 |
|
|
|
53 |
- **mode** *(string): 'Expectation-Adjusted-Distinct' or 'Distinct' for diversity calculation. If 'Expectation-Adjusted-Distinct', the scores for both modes will be returned. The default value is 'Expectation-Adjusted-Distinct'*
|
54 |
- **vocab_size** *(int): For calculating 'Expectation-Adjusted-Distinct', either vocab_size or dataForVocabCal should not be None. Default value is None*
|
55 |
- **dataForVocabCal** *(list of string): dataForVocabCal for calculating the vocab_size for 'Expectation-Adjusted-Distinct'. Typically, it should be a list of sentences consisting the task dataset. For calculating 'Expectation-Adjusted-Distinct', either vocab_size or dataForVocabCal should not be None. Default value is None*
|
56 |
+
- **tokenizer** *(string or tokenizer class): tokenizer for splitting sentences into words. Default value is Tokenizer13a(). NLTK tokenizer is available.*
|
57 |
|
58 |
### Output Values
|
59 |
|
__pycache__/distinct.cpython-38.pyc
ADDED
Binary file (6.1 kB). View file
|
|
distinct.py
CHANGED
@@ -15,6 +15,7 @@
|
|
15 |
|
16 |
import evaluate
|
17 |
import datasets
|
|
|
18 |
|
19 |
|
20 |
|
@@ -113,11 +114,11 @@ class distinct(evaluate.Measurement):
|
|
113 |
|
114 |
def _download_and_prepare(self, dl_manager):
|
115 |
"""Optional: download external resources useful to compute the scores"""
|
116 |
-
pass
|
117 |
|
118 |
-
def _compute(self, predictions, dataForVocabCal=None, vocab_size=None, tokenizer=
|
119 |
-
|
120 |
from nltk.util import ngrams
|
|
|
|
|
121 |
|
122 |
"""Returns the scores"""
|
123 |
if mode == "Expectation-Adjusted-Distinct" and vocab_size is None and dataForVocabCal is None:
|
@@ -127,6 +128,9 @@ class distinct(evaluate.Measurement):
|
|
127 |
elif mode == "Distinct":
|
128 |
pass
|
129 |
|
|
|
|
|
|
|
130 |
if mode == "Expectation-Adjusted-Distinct" and dataForVocabCal is not None:
|
131 |
if isinstance(dataForVocabCal, list) and len(dataForVocabCal) > 0 and isinstance(dataForVocabCal[0], str):
|
132 |
vocab = set()
|
@@ -145,18 +149,13 @@ class distinct(evaluate.Measurement):
|
|
145 |
total_tokens_2grams = []
|
146 |
total_tokens_3grams = []
|
147 |
|
148 |
-
for prediction in predictions:
|
149 |
-
|
150 |
-
tokens =
|
151 |
-
tokens_2grams = list(ngrams(
|
152 |
-
tokens_3grams = list(ngrams(
|
153 |
-
|
154 |
-
|
155 |
-
tokens = list(tokenizer.tokenize(prediction))
|
156 |
-
tokens_2grams = list(ngrams(list(tokenizer.tokenize(prediction)), 2, pad_left=True, left_pad_symbol='<s>'))
|
157 |
-
tokens_3grams = list(ngrams(list(tokenizer.tokenize(prediction)), 3, pad_left=True, left_pad_symbol='<s>'))
|
158 |
-
except Exception as e:
|
159 |
-
raise e
|
160 |
|
161 |
distinct_tokens = distinct_tokens | set(tokens)
|
162 |
distinct_tokens_2grams = distinct_tokens_2grams | set(tokens_2grams)
|
|
|
15 |
|
16 |
import evaluate
|
17 |
import datasets
|
18 |
+
from .tokenizer_13a import Tokenizer13a
|
19 |
|
20 |
|
21 |
|
|
|
114 |
|
115 |
def _download_and_prepare(self, dl_manager):
|
116 |
"""Optional: download external resources useful to compute the scores"""
|
|
|
117 |
|
118 |
+
def _compute(self, predictions, dataForVocabCal=None, vocab_size=None, tokenizer=Tokenizer13a(), mode="Expectation-Adjusted-Distinct"):
|
|
|
119 |
from nltk.util import ngrams
|
120 |
+
|
121 |
+
|
122 |
|
123 |
"""Returns the scores"""
|
124 |
if mode == "Expectation-Adjusted-Distinct" and vocab_size is None and dataForVocabCal is None:
|
|
|
128 |
elif mode == "Distinct":
|
129 |
pass
|
130 |
|
131 |
+
if tokenizer == "white_space":
|
132 |
+
tokenizer = WhitespaceTokenizer()
|
133 |
+
|
134 |
if mode == "Expectation-Adjusted-Distinct" and dataForVocabCal is not None:
|
135 |
if isinstance(dataForVocabCal, list) and len(dataForVocabCal) > 0 and isinstance(dataForVocabCal[0], str):
|
136 |
vocab = set()
|
|
|
149 |
total_tokens_2grams = []
|
150 |
total_tokens_3grams = []
|
151 |
|
152 |
+
for prediction in predictions:
|
153 |
+
try:
|
154 |
+
tokens = list(tokenizer.tokenize(prediction))
|
155 |
+
tokens_2grams = list(ngrams(list(tokenizer.tokenize(prediction)), 2, pad_left=True, left_pad_symbol='<s>'))
|
156 |
+
tokens_3grams = list(ngrams(list(tokenizer.tokenize(prediction)), 3, pad_left=True, left_pad_symbol='<s>'))
|
157 |
+
except Exception as e:
|
158 |
+
raise e
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
distinct_tokens = distinct_tokens | set(tokens)
|
161 |
distinct_tokens_2grams = distinct_tokens_2grams | set(tokens_2grams)
|
requirements.txt
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
git+https://github.com/huggingface/evaluate@main
|
|
|
|
1 |
+
git+https://github.com/huggingface/evaluate@main
|
2 |
+
nltk
|
tests.py
CHANGED
@@ -1,17 +1,14 @@
|
|
1 |
test_cases = [
|
2 |
{
|
3 |
-
"predictions": [
|
4 |
-
"references": [1, 1],
|
5 |
"result": {"metric_score": 0}
|
6 |
},
|
7 |
{
|
8 |
-
"predictions": [
|
9 |
-
"references": [1, 1],
|
10 |
"result": {"metric_score": 1}
|
11 |
},
|
12 |
{
|
13 |
-
"predictions": [
|
14 |
-
"references": [1, 1],
|
15 |
"result": {"metric_score": 0.5}
|
16 |
}
|
17 |
]
|
|
|
1 |
test_cases = [
|
2 |
{
|
3 |
+
"predictions": ["Hi.", "I'm sorry to hear that", "I don't know"],
|
|
|
4 |
"result": {"metric_score": 0}
|
5 |
},
|
6 |
{
|
7 |
+
"predictions": ["Hi.", "I'm sorry to hear that", "I don't know"],
|
|
|
8 |
"result": {"metric_score": 1}
|
9 |
},
|
10 |
{
|
11 |
+
"predictions": ["Hi.", "I'm sorry to hear that", "I don't know"],
|
|
|
12 |
"result": {"metric_score": 0.5}
|
13 |
}
|
14 |
]
|