Spaces:
Sleeping
Sleeping
| # -*- coding: utf-8 -*- | |
| """fontTools.misc.bezierTools.py -- tools for working with Bezier path segments. | |
| """ | |
| from fontTools.misc.arrayTools import calcBounds, sectRect, rectArea | |
| from fontTools.misc.transform import Identity | |
| import math | |
| from collections import namedtuple | |
| try: | |
| import cython | |
| except (AttributeError, ImportError): | |
| # if cython not installed, use mock module with no-op decorators and types | |
| from fontTools.misc import cython | |
| COMPILED = cython.compiled | |
| EPSILON = 1e-9 | |
| Intersection = namedtuple("Intersection", ["pt", "t1", "t2"]) | |
| __all__ = [ | |
| "approximateCubicArcLength", | |
| "approximateCubicArcLengthC", | |
| "approximateQuadraticArcLength", | |
| "approximateQuadraticArcLengthC", | |
| "calcCubicArcLength", | |
| "calcCubicArcLengthC", | |
| "calcQuadraticArcLength", | |
| "calcQuadraticArcLengthC", | |
| "calcCubicBounds", | |
| "calcQuadraticBounds", | |
| "splitLine", | |
| "splitQuadratic", | |
| "splitCubic", | |
| "splitQuadraticAtT", | |
| "splitCubicAtT", | |
| "splitCubicAtTC", | |
| "splitCubicIntoTwoAtTC", | |
| "solveQuadratic", | |
| "solveCubic", | |
| "quadraticPointAtT", | |
| "cubicPointAtT", | |
| "cubicPointAtTC", | |
| "linePointAtT", | |
| "segmentPointAtT", | |
| "lineLineIntersections", | |
| "curveLineIntersections", | |
| "curveCurveIntersections", | |
| "segmentSegmentIntersections", | |
| ] | |
| def calcCubicArcLength(pt1, pt2, pt3, pt4, tolerance=0.005): | |
| """Calculates the arc length for a cubic Bezier segment. | |
| Whereas :func:`approximateCubicArcLength` approximates the length, this | |
| function calculates it by "measuring", recursively dividing the curve | |
| until the divided segments are shorter than ``tolerance``. | |
| Args: | |
| pt1,pt2,pt3,pt4: Control points of the Bezier as 2D tuples. | |
| tolerance: Controls the precision of the calcuation. | |
| Returns: | |
| Arc length value. | |
| """ | |
| return calcCubicArcLengthC( | |
| complex(*pt1), complex(*pt2), complex(*pt3), complex(*pt4), tolerance | |
| ) | |
| def _split_cubic_into_two(p0, p1, p2, p3): | |
| mid = (p0 + 3 * (p1 + p2) + p3) * 0.125 | |
| deriv3 = (p3 + p2 - p1 - p0) * 0.125 | |
| return ( | |
| (p0, (p0 + p1) * 0.5, mid - deriv3, mid), | |
| (mid, mid + deriv3, (p2 + p3) * 0.5, p3), | |
| ) | |
| def _calcCubicArcLengthCRecurse(mult, p0, p1, p2, p3): | |
| arch = abs(p0 - p3) | |
| box = abs(p0 - p1) + abs(p1 - p2) + abs(p2 - p3) | |
| if arch * mult + EPSILON >= box: | |
| return (arch + box) * 0.5 | |
| else: | |
| one, two = _split_cubic_into_two(p0, p1, p2, p3) | |
| return _calcCubicArcLengthCRecurse(mult, *one) + _calcCubicArcLengthCRecurse( | |
| mult, *two | |
| ) | |
| def calcCubicArcLengthC(pt1, pt2, pt3, pt4, tolerance=0.005): | |
| """Calculates the arc length for a cubic Bezier segment. | |
| Args: | |
| pt1,pt2,pt3,pt4: Control points of the Bezier as complex numbers. | |
| tolerance: Controls the precision of the calcuation. | |
| Returns: | |
| Arc length value. | |
| """ | |
| mult = 1.0 + 1.5 * tolerance # The 1.5 is a empirical hack; no math | |
| return _calcCubicArcLengthCRecurse(mult, pt1, pt2, pt3, pt4) | |
| epsilonDigits = 6 | |
| epsilon = 1e-10 | |
| def _dot(v1, v2): | |
| return (v1 * v2.conjugate()).real | |
| def _intSecAtan(x): | |
| # In : sympy.integrate(sp.sec(sp.atan(x))) | |
| # Out: x*sqrt(x**2 + 1)/2 + asinh(x)/2 | |
| return x * math.sqrt(x**2 + 1) / 2 + math.asinh(x) / 2 | |
| def calcQuadraticArcLength(pt1, pt2, pt3): | |
| """Calculates the arc length for a quadratic Bezier segment. | |
| Args: | |
| pt1: Start point of the Bezier as 2D tuple. | |
| pt2: Handle point of the Bezier as 2D tuple. | |
| pt3: End point of the Bezier as 2D tuple. | |
| Returns: | |
| Arc length value. | |
| Example:: | |
| >>> calcQuadraticArcLength((0, 0), (0, 0), (0, 0)) # empty segment | |
| 0.0 | |
| >>> calcQuadraticArcLength((0, 0), (50, 0), (80, 0)) # collinear points | |
| 80.0 | |
| >>> calcQuadraticArcLength((0, 0), (0, 50), (0, 80)) # collinear points vertical | |
| 80.0 | |
| >>> calcQuadraticArcLength((0, 0), (50, 20), (100, 40)) # collinear points | |
| 107.70329614269008 | |
| >>> calcQuadraticArcLength((0, 0), (0, 100), (100, 0)) | |
| 154.02976155645263 | |
| >>> calcQuadraticArcLength((0, 0), (0, 50), (100, 0)) | |
| 120.21581243984076 | |
| >>> calcQuadraticArcLength((0, 0), (50, -10), (80, 50)) | |
| 102.53273816445825 | |
| >>> calcQuadraticArcLength((0, 0), (40, 0), (-40, 0)) # collinear points, control point outside | |
| 66.66666666666667 | |
| >>> calcQuadraticArcLength((0, 0), (40, 0), (0, 0)) # collinear points, looping back | |
| 40.0 | |
| """ | |
| return calcQuadraticArcLengthC(complex(*pt1), complex(*pt2), complex(*pt3)) | |
| def calcQuadraticArcLengthC(pt1, pt2, pt3): | |
| """Calculates the arc length for a quadratic Bezier segment. | |
| Args: | |
| pt1: Start point of the Bezier as a complex number. | |
| pt2: Handle point of the Bezier as a complex number. | |
| pt3: End point of the Bezier as a complex number. | |
| Returns: | |
| Arc length value. | |
| """ | |
| # Analytical solution to the length of a quadratic bezier. | |
| # Documentation: https://github.com/fonttools/fonttools/issues/3055 | |
| d0 = pt2 - pt1 | |
| d1 = pt3 - pt2 | |
| d = d1 - d0 | |
| n = d * 1j | |
| scale = abs(n) | |
| if scale == 0.0: | |
| return abs(pt3 - pt1) | |
| origDist = _dot(n, d0) | |
| if abs(origDist) < epsilon: | |
| if _dot(d0, d1) >= 0: | |
| return abs(pt3 - pt1) | |
| a, b = abs(d0), abs(d1) | |
| return (a * a + b * b) / (a + b) | |
| x0 = _dot(d, d0) / origDist | |
| x1 = _dot(d, d1) / origDist | |
| Len = abs(2 * (_intSecAtan(x1) - _intSecAtan(x0)) * origDist / (scale * (x1 - x0))) | |
| return Len | |
| def approximateQuadraticArcLength(pt1, pt2, pt3): | |
| """Calculates the arc length for a quadratic Bezier segment. | |
| Uses Gauss-Legendre quadrature for a branch-free approximation. | |
| See :func:`calcQuadraticArcLength` for a slower but more accurate result. | |
| Args: | |
| pt1: Start point of the Bezier as 2D tuple. | |
| pt2: Handle point of the Bezier as 2D tuple. | |
| pt3: End point of the Bezier as 2D tuple. | |
| Returns: | |
| Approximate arc length value. | |
| """ | |
| return approximateQuadraticArcLengthC(complex(*pt1), complex(*pt2), complex(*pt3)) | |
| def approximateQuadraticArcLengthC(pt1, pt2, pt3): | |
| """Calculates the arc length for a quadratic Bezier segment. | |
| Uses Gauss-Legendre quadrature for a branch-free approximation. | |
| See :func:`calcQuadraticArcLength` for a slower but more accurate result. | |
| Args: | |
| pt1: Start point of the Bezier as a complex number. | |
| pt2: Handle point of the Bezier as a complex number. | |
| pt3: End point of the Bezier as a complex number. | |
| Returns: | |
| Approximate arc length value. | |
| """ | |
| # This, essentially, approximates the length-of-derivative function | |
| # to be integrated with the best-matching fifth-degree polynomial | |
| # approximation of it. | |
| # | |
| # https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss.E2.80.93Legendre_quadrature | |
| # abs(BezierCurveC[2].diff(t).subs({t:T})) for T in sorted(.5, .5±sqrt(3/5)/2), | |
| # weighted 5/18, 8/18, 5/18 respectively. | |
| v0 = abs( | |
| -0.492943519233745 * pt1 + 0.430331482911935 * pt2 + 0.0626120363218102 * pt3 | |
| ) | |
| v1 = abs(pt3 - pt1) * 0.4444444444444444 | |
| v2 = abs( | |
| -0.0626120363218102 * pt1 - 0.430331482911935 * pt2 + 0.492943519233745 * pt3 | |
| ) | |
| return v0 + v1 + v2 | |
| def calcQuadraticBounds(pt1, pt2, pt3): | |
| """Calculates the bounding rectangle for a quadratic Bezier segment. | |
| Args: | |
| pt1: Start point of the Bezier as a 2D tuple. | |
| pt2: Handle point of the Bezier as a 2D tuple. | |
| pt3: End point of the Bezier as a 2D tuple. | |
| Returns: | |
| A four-item tuple representing the bounding rectangle ``(xMin, yMin, xMax, yMax)``. | |
| Example:: | |
| >>> calcQuadraticBounds((0, 0), (50, 100), (100, 0)) | |
| (0, 0, 100, 50.0) | |
| >>> calcQuadraticBounds((0, 0), (100, 0), (100, 100)) | |
| (0.0, 0.0, 100, 100) | |
| """ | |
| (ax, ay), (bx, by), (cx, cy) = calcQuadraticParameters(pt1, pt2, pt3) | |
| ax2 = ax * 2.0 | |
| ay2 = ay * 2.0 | |
| roots = [] | |
| if ax2 != 0: | |
| roots.append(-bx / ax2) | |
| if ay2 != 0: | |
| roots.append(-by / ay2) | |
| points = [ | |
| (ax * t * t + bx * t + cx, ay * t * t + by * t + cy) | |
| for t in roots | |
| if 0 <= t < 1 | |
| ] + [pt1, pt3] | |
| return calcBounds(points) | |
| def approximateCubicArcLength(pt1, pt2, pt3, pt4): | |
| """Approximates the arc length for a cubic Bezier segment. | |
| Uses Gauss-Lobatto quadrature with n=5 points to approximate arc length. | |
| See :func:`calcCubicArcLength` for a slower but more accurate result. | |
| Args: | |
| pt1,pt2,pt3,pt4: Control points of the Bezier as 2D tuples. | |
| Returns: | |
| Arc length value. | |
| Example:: | |
| >>> approximateCubicArcLength((0, 0), (25, 100), (75, 100), (100, 0)) | |
| 190.04332968932817 | |
| >>> approximateCubicArcLength((0, 0), (50, 0), (100, 50), (100, 100)) | |
| 154.8852074945903 | |
| >>> approximateCubicArcLength((0, 0), (50, 0), (100, 0), (150, 0)) # line; exact result should be 150. | |
| 149.99999999999991 | |
| >>> approximateCubicArcLength((0, 0), (50, 0), (100, 0), (-50, 0)) # cusp; exact result should be 150. | |
| 136.9267662156362 | |
| >>> approximateCubicArcLength((0, 0), (50, 0), (100, -50), (-50, 0)) # cusp | |
| 154.80848416537057 | |
| """ | |
| return approximateCubicArcLengthC( | |
| complex(*pt1), complex(*pt2), complex(*pt3), complex(*pt4) | |
| ) | |
| def approximateCubicArcLengthC(pt1, pt2, pt3, pt4): | |
| """Approximates the arc length for a cubic Bezier segment. | |
| Args: | |
| pt1,pt2,pt3,pt4: Control points of the Bezier as complex numbers. | |
| Returns: | |
| Arc length value. | |
| """ | |
| # This, essentially, approximates the length-of-derivative function | |
| # to be integrated with the best-matching seventh-degree polynomial | |
| # approximation of it. | |
| # | |
| # https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss.E2.80.93Lobatto_rules | |
| # abs(BezierCurveC[3].diff(t).subs({t:T})) for T in sorted(0, .5±(3/7)**.5/2, .5, 1), | |
| # weighted 1/20, 49/180, 32/90, 49/180, 1/20 respectively. | |
| v0 = abs(pt2 - pt1) * 0.15 | |
| v1 = abs( | |
| -0.558983582205757 * pt1 | |
| + 0.325650248872424 * pt2 | |
| + 0.208983582205757 * pt3 | |
| + 0.024349751127576 * pt4 | |
| ) | |
| v2 = abs(pt4 - pt1 + pt3 - pt2) * 0.26666666666666666 | |
| v3 = abs( | |
| -0.024349751127576 * pt1 | |
| - 0.208983582205757 * pt2 | |
| - 0.325650248872424 * pt3 | |
| + 0.558983582205757 * pt4 | |
| ) | |
| v4 = abs(pt4 - pt3) * 0.15 | |
| return v0 + v1 + v2 + v3 + v4 | |
| def calcCubicBounds(pt1, pt2, pt3, pt4): | |
| """Calculates the bounding rectangle for a quadratic Bezier segment. | |
| Args: | |
| pt1,pt2,pt3,pt4: Control points of the Bezier as 2D tuples. | |
| Returns: | |
| A four-item tuple representing the bounding rectangle ``(xMin, yMin, xMax, yMax)``. | |
| Example:: | |
| >>> calcCubicBounds((0, 0), (25, 100), (75, 100), (100, 0)) | |
| (0, 0, 100, 75.0) | |
| >>> calcCubicBounds((0, 0), (50, 0), (100, 50), (100, 100)) | |
| (0.0, 0.0, 100, 100) | |
| >>> print("%f %f %f %f" % calcCubicBounds((50, 0), (0, 100), (100, 100), (50, 0))) | |
| 35.566243 0.000000 64.433757 75.000000 | |
| """ | |
| (ax, ay), (bx, by), (cx, cy), (dx, dy) = calcCubicParameters(pt1, pt2, pt3, pt4) | |
| # calc first derivative | |
| ax3 = ax * 3.0 | |
| ay3 = ay * 3.0 | |
| bx2 = bx * 2.0 | |
| by2 = by * 2.0 | |
| xRoots = [t for t in solveQuadratic(ax3, bx2, cx) if 0 <= t < 1] | |
| yRoots = [t for t in solveQuadratic(ay3, by2, cy) if 0 <= t < 1] | |
| roots = xRoots + yRoots | |
| points = [ | |
| ( | |
| ax * t * t * t + bx * t * t + cx * t + dx, | |
| ay * t * t * t + by * t * t + cy * t + dy, | |
| ) | |
| for t in roots | |
| ] + [pt1, pt4] | |
| return calcBounds(points) | |
| def splitLine(pt1, pt2, where, isHorizontal): | |
| """Split a line at a given coordinate. | |
| Args: | |
| pt1: Start point of line as 2D tuple. | |
| pt2: End point of line as 2D tuple. | |
| where: Position at which to split the line. | |
| isHorizontal: Direction of the ray splitting the line. If true, | |
| ``where`` is interpreted as a Y coordinate; if false, then | |
| ``where`` is interpreted as an X coordinate. | |
| Returns: | |
| A list of two line segments (each line segment being two 2D tuples) | |
| if the line was successfully split, or a list containing the original | |
| line. | |
| Example:: | |
| >>> printSegments(splitLine((0, 0), (100, 100), 50, True)) | |
| ((0, 0), (50, 50)) | |
| ((50, 50), (100, 100)) | |
| >>> printSegments(splitLine((0, 0), (100, 100), 100, True)) | |
| ((0, 0), (100, 100)) | |
| >>> printSegments(splitLine((0, 0), (100, 100), 0, True)) | |
| ((0, 0), (0, 0)) | |
| ((0, 0), (100, 100)) | |
| >>> printSegments(splitLine((0, 0), (100, 100), 0, False)) | |
| ((0, 0), (0, 0)) | |
| ((0, 0), (100, 100)) | |
| >>> printSegments(splitLine((100, 0), (0, 0), 50, False)) | |
| ((100, 0), (50, 0)) | |
| ((50, 0), (0, 0)) | |
| >>> printSegments(splitLine((0, 100), (0, 0), 50, True)) | |
| ((0, 100), (0, 50)) | |
| ((0, 50), (0, 0)) | |
| """ | |
| pt1x, pt1y = pt1 | |
| pt2x, pt2y = pt2 | |
| ax = pt2x - pt1x | |
| ay = pt2y - pt1y | |
| bx = pt1x | |
| by = pt1y | |
| a = (ax, ay)[isHorizontal] | |
| if a == 0: | |
| return [(pt1, pt2)] | |
| t = (where - (bx, by)[isHorizontal]) / a | |
| if 0 <= t < 1: | |
| midPt = ax * t + bx, ay * t + by | |
| return [(pt1, midPt), (midPt, pt2)] | |
| else: | |
| return [(pt1, pt2)] | |
| def splitQuadratic(pt1, pt2, pt3, where, isHorizontal): | |
| """Split a quadratic Bezier curve at a given coordinate. | |
| Args: | |
| pt1,pt2,pt3: Control points of the Bezier as 2D tuples. | |
| where: Position at which to split the curve. | |
| isHorizontal: Direction of the ray splitting the curve. If true, | |
| ``where`` is interpreted as a Y coordinate; if false, then | |
| ``where`` is interpreted as an X coordinate. | |
| Returns: | |
| A list of two curve segments (each curve segment being three 2D tuples) | |
| if the curve was successfully split, or a list containing the original | |
| curve. | |
| Example:: | |
| >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 150, False)) | |
| ((0, 0), (50, 100), (100, 0)) | |
| >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 50, False)) | |
| ((0, 0), (25, 50), (50, 50)) | |
| ((50, 50), (75, 50), (100, 0)) | |
| >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 25, False)) | |
| ((0, 0), (12.5, 25), (25, 37.5)) | |
| ((25, 37.5), (62.5, 75), (100, 0)) | |
| >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 25, True)) | |
| ((0, 0), (7.32233, 14.6447), (14.6447, 25)) | |
| ((14.6447, 25), (50, 75), (85.3553, 25)) | |
| ((85.3553, 25), (92.6777, 14.6447), (100, -7.10543e-15)) | |
| >>> # XXX I'm not at all sure if the following behavior is desirable: | |
| >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 50, True)) | |
| ((0, 0), (25, 50), (50, 50)) | |
| ((50, 50), (50, 50), (50, 50)) | |
| ((50, 50), (75, 50), (100, 0)) | |
| """ | |
| a, b, c = calcQuadraticParameters(pt1, pt2, pt3) | |
| solutions = solveQuadratic( | |
| a[isHorizontal], b[isHorizontal], c[isHorizontal] - where | |
| ) | |
| solutions = sorted(t for t in solutions if 0 <= t < 1) | |
| if not solutions: | |
| return [(pt1, pt2, pt3)] | |
| return _splitQuadraticAtT(a, b, c, *solutions) | |
| def splitCubic(pt1, pt2, pt3, pt4, where, isHorizontal): | |
| """Split a cubic Bezier curve at a given coordinate. | |
| Args: | |
| pt1,pt2,pt3,pt4: Control points of the Bezier as 2D tuples. | |
| where: Position at which to split the curve. | |
| isHorizontal: Direction of the ray splitting the curve. If true, | |
| ``where`` is interpreted as a Y coordinate; if false, then | |
| ``where`` is interpreted as an X coordinate. | |
| Returns: | |
| A list of two curve segments (each curve segment being four 2D tuples) | |
| if the curve was successfully split, or a list containing the original | |
| curve. | |
| Example:: | |
| >>> printSegments(splitCubic((0, 0), (25, 100), (75, 100), (100, 0), 150, False)) | |
| ((0, 0), (25, 100), (75, 100), (100, 0)) | |
| >>> printSegments(splitCubic((0, 0), (25, 100), (75, 100), (100, 0), 50, False)) | |
| ((0, 0), (12.5, 50), (31.25, 75), (50, 75)) | |
| ((50, 75), (68.75, 75), (87.5, 50), (100, 0)) | |
| >>> printSegments(splitCubic((0, 0), (25, 100), (75, 100), (100, 0), 25, True)) | |
| ((0, 0), (2.29379, 9.17517), (4.79804, 17.5085), (7.47414, 25)) | |
| ((7.47414, 25), (31.2886, 91.6667), (68.7114, 91.6667), (92.5259, 25)) | |
| ((92.5259, 25), (95.202, 17.5085), (97.7062, 9.17517), (100, 1.77636e-15)) | |
| """ | |
| a, b, c, d = calcCubicParameters(pt1, pt2, pt3, pt4) | |
| solutions = solveCubic( | |
| a[isHorizontal], b[isHorizontal], c[isHorizontal], d[isHorizontal] - where | |
| ) | |
| solutions = sorted(t for t in solutions if 0 <= t < 1) | |
| if not solutions: | |
| return [(pt1, pt2, pt3, pt4)] | |
| return _splitCubicAtT(a, b, c, d, *solutions) | |
| def splitQuadraticAtT(pt1, pt2, pt3, *ts): | |
| """Split a quadratic Bezier curve at one or more values of t. | |
| Args: | |
| pt1,pt2,pt3: Control points of the Bezier as 2D tuples. | |
| *ts: Positions at which to split the curve. | |
| Returns: | |
| A list of curve segments (each curve segment being three 2D tuples). | |
| Examples:: | |
| >>> printSegments(splitQuadraticAtT((0, 0), (50, 100), (100, 0), 0.5)) | |
| ((0, 0), (25, 50), (50, 50)) | |
| ((50, 50), (75, 50), (100, 0)) | |
| >>> printSegments(splitQuadraticAtT((0, 0), (50, 100), (100, 0), 0.5, 0.75)) | |
| ((0, 0), (25, 50), (50, 50)) | |
| ((50, 50), (62.5, 50), (75, 37.5)) | |
| ((75, 37.5), (87.5, 25), (100, 0)) | |
| """ | |
| a, b, c = calcQuadraticParameters(pt1, pt2, pt3) | |
| return _splitQuadraticAtT(a, b, c, *ts) | |
| def splitCubicAtT(pt1, pt2, pt3, pt4, *ts): | |
| """Split a cubic Bezier curve at one or more values of t. | |
| Args: | |
| pt1,pt2,pt3,pt4: Control points of the Bezier as 2D tuples. | |
| *ts: Positions at which to split the curve. | |
| Returns: | |
| A list of curve segments (each curve segment being four 2D tuples). | |
| Examples:: | |
| >>> printSegments(splitCubicAtT((0, 0), (25, 100), (75, 100), (100, 0), 0.5)) | |
| ((0, 0), (12.5, 50), (31.25, 75), (50, 75)) | |
| ((50, 75), (68.75, 75), (87.5, 50), (100, 0)) | |
| >>> printSegments(splitCubicAtT((0, 0), (25, 100), (75, 100), (100, 0), 0.5, 0.75)) | |
| ((0, 0), (12.5, 50), (31.25, 75), (50, 75)) | |
| ((50, 75), (59.375, 75), (68.75, 68.75), (77.3438, 56.25)) | |
| ((77.3438, 56.25), (85.9375, 43.75), (93.75, 25), (100, 0)) | |
| """ | |
| a, b, c, d = calcCubicParameters(pt1, pt2, pt3, pt4) | |
| split = _splitCubicAtT(a, b, c, d, *ts) | |
| # the split impl can introduce floating point errors; we know the first | |
| # segment should always start at pt1 and the last segment should end at pt4, | |
| # so we set those values directly before returning. | |
| split[0] = (pt1, *split[0][1:]) | |
| split[-1] = (*split[-1][:-1], pt4) | |
| return split | |
| def splitCubicAtTC(pt1, pt2, pt3, pt4, *ts): | |
| """Split a cubic Bezier curve at one or more values of t. | |
| Args: | |
| pt1,pt2,pt3,pt4: Control points of the Bezier as complex numbers.. | |
| *ts: Positions at which to split the curve. | |
| Yields: | |
| Curve segments (each curve segment being four complex numbers). | |
| """ | |
| a, b, c, d = calcCubicParametersC(pt1, pt2, pt3, pt4) | |
| yield from _splitCubicAtTC(a, b, c, d, *ts) | |
| def splitCubicIntoTwoAtTC(pt1, pt2, pt3, pt4, t): | |
| """Split a cubic Bezier curve at t. | |
| Args: | |
| pt1,pt2,pt3,pt4: Control points of the Bezier as complex numbers. | |
| t: Position at which to split the curve. | |
| Returns: | |
| A tuple of two curve segments (each curve segment being four complex numbers). | |
| """ | |
| t2 = t * t | |
| _1_t = 1 - t | |
| _1_t_2 = _1_t * _1_t | |
| _2_t_1_t = 2 * t * _1_t | |
| pointAtT = ( | |
| _1_t_2 * _1_t * pt1 + 3 * (_1_t_2 * t * pt2 + _1_t * t2 * pt3) + t2 * t * pt4 | |
| ) | |
| off1 = _1_t_2 * pt1 + _2_t_1_t * pt2 + t2 * pt3 | |
| off2 = _1_t_2 * pt2 + _2_t_1_t * pt3 + t2 * pt4 | |
| pt2 = pt1 + (pt2 - pt1) * t | |
| pt3 = pt4 + (pt3 - pt4) * _1_t | |
| return ((pt1, pt2, off1, pointAtT), (pointAtT, off2, pt3, pt4)) | |
| def _splitQuadraticAtT(a, b, c, *ts): | |
| ts = list(ts) | |
| segments = [] | |
| ts.insert(0, 0.0) | |
| ts.append(1.0) | |
| ax, ay = a | |
| bx, by = b | |
| cx, cy = c | |
| for i in range(len(ts) - 1): | |
| t1 = ts[i] | |
| t2 = ts[i + 1] | |
| delta = t2 - t1 | |
| # calc new a, b and c | |
| delta_2 = delta * delta | |
| a1x = ax * delta_2 | |
| a1y = ay * delta_2 | |
| b1x = (2 * ax * t1 + bx) * delta | |
| b1y = (2 * ay * t1 + by) * delta | |
| t1_2 = t1 * t1 | |
| c1x = ax * t1_2 + bx * t1 + cx | |
| c1y = ay * t1_2 + by * t1 + cy | |
| pt1, pt2, pt3 = calcQuadraticPoints((a1x, a1y), (b1x, b1y), (c1x, c1y)) | |
| segments.append((pt1, pt2, pt3)) | |
| return segments | |
| def _splitCubicAtT(a, b, c, d, *ts): | |
| ts = list(ts) | |
| ts.insert(0, 0.0) | |
| ts.append(1.0) | |
| segments = [] | |
| ax, ay = a | |
| bx, by = b | |
| cx, cy = c | |
| dx, dy = d | |
| for i in range(len(ts) - 1): | |
| t1 = ts[i] | |
| t2 = ts[i + 1] | |
| delta = t2 - t1 | |
| delta_2 = delta * delta | |
| delta_3 = delta * delta_2 | |
| t1_2 = t1 * t1 | |
| t1_3 = t1 * t1_2 | |
| # calc new a, b, c and d | |
| a1x = ax * delta_3 | |
| a1y = ay * delta_3 | |
| b1x = (3 * ax * t1 + bx) * delta_2 | |
| b1y = (3 * ay * t1 + by) * delta_2 | |
| c1x = (2 * bx * t1 + cx + 3 * ax * t1_2) * delta | |
| c1y = (2 * by * t1 + cy + 3 * ay * t1_2) * delta | |
| d1x = ax * t1_3 + bx * t1_2 + cx * t1 + dx | |
| d1y = ay * t1_3 + by * t1_2 + cy * t1 + dy | |
| pt1, pt2, pt3, pt4 = calcCubicPoints( | |
| (a1x, a1y), (b1x, b1y), (c1x, c1y), (d1x, d1y) | |
| ) | |
| segments.append((pt1, pt2, pt3, pt4)) | |
| return segments | |
| def _splitCubicAtTC(a, b, c, d, *ts): | |
| ts = list(ts) | |
| ts.insert(0, 0.0) | |
| ts.append(1.0) | |
| for i in range(len(ts) - 1): | |
| t1 = ts[i] | |
| t2 = ts[i + 1] | |
| delta = t2 - t1 | |
| delta_2 = delta * delta | |
| delta_3 = delta * delta_2 | |
| t1_2 = t1 * t1 | |
| t1_3 = t1 * t1_2 | |
| # calc new a, b, c and d | |
| a1 = a * delta_3 | |
| b1 = (3 * a * t1 + b) * delta_2 | |
| c1 = (2 * b * t1 + c + 3 * a * t1_2) * delta | |
| d1 = a * t1_3 + b * t1_2 + c * t1 + d | |
| pt1, pt2, pt3, pt4 = calcCubicPointsC(a1, b1, c1, d1) | |
| yield (pt1, pt2, pt3, pt4) | |
| # | |
| # Equation solvers. | |
| # | |
| from math import sqrt, acos, cos, pi | |
| def solveQuadratic(a, b, c, sqrt=sqrt): | |
| """Solve a quadratic equation. | |
| Solves *a*x*x + b*x + c = 0* where a, b and c are real. | |
| Args: | |
| a: coefficient of *x²* | |
| b: coefficient of *x* | |
| c: constant term | |
| Returns: | |
| A list of roots. Note that the returned list is neither guaranteed to | |
| be sorted nor to contain unique values! | |
| """ | |
| if abs(a) < epsilon: | |
| if abs(b) < epsilon: | |
| # We have a non-equation; therefore, we have no valid solution | |
| roots = [] | |
| else: | |
| # We have a linear equation with 1 root. | |
| roots = [-c / b] | |
| else: | |
| # We have a true quadratic equation. Apply the quadratic formula to find two roots. | |
| DD = b * b - 4.0 * a * c | |
| if DD >= 0.0: | |
| rDD = sqrt(DD) | |
| roots = [(-b + rDD) / 2.0 / a, (-b - rDD) / 2.0 / a] | |
| else: | |
| # complex roots, ignore | |
| roots = [] | |
| return roots | |
| def solveCubic(a, b, c, d): | |
| """Solve a cubic equation. | |
| Solves *a*x*x*x + b*x*x + c*x + d = 0* where a, b, c and d are real. | |
| Args: | |
| a: coefficient of *x³* | |
| b: coefficient of *x²* | |
| c: coefficient of *x* | |
| d: constant term | |
| Returns: | |
| A list of roots. Note that the returned list is neither guaranteed to | |
| be sorted nor to contain unique values! | |
| Examples:: | |
| >>> solveCubic(1, 1, -6, 0) | |
| [-3.0, -0.0, 2.0] | |
| >>> solveCubic(-10.0, -9.0, 48.0, -29.0) | |
| [-2.9, 1.0, 1.0] | |
| >>> solveCubic(-9.875, -9.0, 47.625, -28.75) | |
| [-2.911392, 1.0, 1.0] | |
| >>> solveCubic(1.0, -4.5, 6.75, -3.375) | |
| [1.5, 1.5, 1.5] | |
| >>> solveCubic(-12.0, 18.0, -9.0, 1.50023651123) | |
| [0.5, 0.5, 0.5] | |
| >>> solveCubic( | |
| ... 9.0, 0.0, 0.0, -7.62939453125e-05 | |
| ... ) == [-0.0, -0.0, -0.0] | |
| True | |
| """ | |
| # | |
| # adapted from: | |
| # CUBIC.C - Solve a cubic polynomial | |
| # public domain by Ross Cottrell | |
| # found at: http://www.strangecreations.com/library/snippets/Cubic.C | |
| # | |
| if abs(a) < epsilon: | |
| # don't just test for zero; for very small values of 'a' solveCubic() | |
| # returns unreliable results, so we fall back to quad. | |
| return solveQuadratic(b, c, d) | |
| a = float(a) | |
| a1 = b / a | |
| a2 = c / a | |
| a3 = d / a | |
| Q = (a1 * a1 - 3.0 * a2) / 9.0 | |
| R = (2.0 * a1 * a1 * a1 - 9.0 * a1 * a2 + 27.0 * a3) / 54.0 | |
| R2 = R * R | |
| Q3 = Q * Q * Q | |
| R2 = 0 if R2 < epsilon else R2 | |
| Q3 = 0 if abs(Q3) < epsilon else Q3 | |
| R2_Q3 = R2 - Q3 | |
| if R2 == 0.0 and Q3 == 0.0: | |
| x = round(-a1 / 3.0, epsilonDigits) | |
| return [x, x, x] | |
| elif R2_Q3 <= epsilon * 0.5: | |
| # The epsilon * .5 above ensures that Q3 is not zero. | |
| theta = acos(max(min(R / sqrt(Q3), 1.0), -1.0)) | |
| rQ2 = -2.0 * sqrt(Q) | |
| a1_3 = a1 / 3.0 | |
| x0 = rQ2 * cos(theta / 3.0) - a1_3 | |
| x1 = rQ2 * cos((theta + 2.0 * pi) / 3.0) - a1_3 | |
| x2 = rQ2 * cos((theta + 4.0 * pi) / 3.0) - a1_3 | |
| x0, x1, x2 = sorted([x0, x1, x2]) | |
| # Merge roots that are close-enough | |
| if x1 - x0 < epsilon and x2 - x1 < epsilon: | |
| x0 = x1 = x2 = round((x0 + x1 + x2) / 3.0, epsilonDigits) | |
| elif x1 - x0 < epsilon: | |
| x0 = x1 = round((x0 + x1) / 2.0, epsilonDigits) | |
| x2 = round(x2, epsilonDigits) | |
| elif x2 - x1 < epsilon: | |
| x0 = round(x0, epsilonDigits) | |
| x1 = x2 = round((x1 + x2) / 2.0, epsilonDigits) | |
| else: | |
| x0 = round(x0, epsilonDigits) | |
| x1 = round(x1, epsilonDigits) | |
| x2 = round(x2, epsilonDigits) | |
| return [x0, x1, x2] | |
| else: | |
| x = pow(sqrt(R2_Q3) + abs(R), 1 / 3.0) | |
| x = x + Q / x | |
| if R >= 0.0: | |
| x = -x | |
| x = round(x - a1 / 3.0, epsilonDigits) | |
| return [x] | |
| # | |
| # Conversion routines for points to parameters and vice versa | |
| # | |
| def calcQuadraticParameters(pt1, pt2, pt3): | |
| x2, y2 = pt2 | |
| x3, y3 = pt3 | |
| cx, cy = pt1 | |
| bx = (x2 - cx) * 2.0 | |
| by = (y2 - cy) * 2.0 | |
| ax = x3 - cx - bx | |
| ay = y3 - cy - by | |
| return (ax, ay), (bx, by), (cx, cy) | |
| def calcCubicParameters(pt1, pt2, pt3, pt4): | |
| x2, y2 = pt2 | |
| x3, y3 = pt3 | |
| x4, y4 = pt4 | |
| dx, dy = pt1 | |
| cx = (x2 - dx) * 3.0 | |
| cy = (y2 - dy) * 3.0 | |
| bx = (x3 - x2) * 3.0 - cx | |
| by = (y3 - y2) * 3.0 - cy | |
| ax = x4 - dx - cx - bx | |
| ay = y4 - dy - cy - by | |
| return (ax, ay), (bx, by), (cx, cy), (dx, dy) | |
| def calcCubicParametersC(pt1, pt2, pt3, pt4): | |
| c = (pt2 - pt1) * 3.0 | |
| b = (pt3 - pt2) * 3.0 - c | |
| a = pt4 - pt1 - c - b | |
| return (a, b, c, pt1) | |
| def calcQuadraticPoints(a, b, c): | |
| ax, ay = a | |
| bx, by = b | |
| cx, cy = c | |
| x1 = cx | |
| y1 = cy | |
| x2 = (bx * 0.5) + cx | |
| y2 = (by * 0.5) + cy | |
| x3 = ax + bx + cx | |
| y3 = ay + by + cy | |
| return (x1, y1), (x2, y2), (x3, y3) | |
| def calcCubicPoints(a, b, c, d): | |
| ax, ay = a | |
| bx, by = b | |
| cx, cy = c | |
| dx, dy = d | |
| x1 = dx | |
| y1 = dy | |
| x2 = (cx / 3.0) + dx | |
| y2 = (cy / 3.0) + dy | |
| x3 = (bx + cx) / 3.0 + x2 | |
| y3 = (by + cy) / 3.0 + y2 | |
| x4 = ax + dx + cx + bx | |
| y4 = ay + dy + cy + by | |
| return (x1, y1), (x2, y2), (x3, y3), (x4, y4) | |
| def calcCubicPointsC(a, b, c, d): | |
| p2 = c * (1 / 3) + d | |
| p3 = (b + c) * (1 / 3) + p2 | |
| p4 = a + b + c + d | |
| return (d, p2, p3, p4) | |
| # | |
| # Point at time | |
| # | |
| def linePointAtT(pt1, pt2, t): | |
| """Finds the point at time `t` on a line. | |
| Args: | |
| pt1, pt2: Coordinates of the line as 2D tuples. | |
| t: The time along the line. | |
| Returns: | |
| A 2D tuple with the coordinates of the point. | |
| """ | |
| return ((pt1[0] * (1 - t) + pt2[0] * t), (pt1[1] * (1 - t) + pt2[1] * t)) | |
| def quadraticPointAtT(pt1, pt2, pt3, t): | |
| """Finds the point at time `t` on a quadratic curve. | |
| Args: | |
| pt1, pt2, pt3: Coordinates of the curve as 2D tuples. | |
| t: The time along the curve. | |
| Returns: | |
| A 2D tuple with the coordinates of the point. | |
| """ | |
| x = (1 - t) * (1 - t) * pt1[0] + 2 * (1 - t) * t * pt2[0] + t * t * pt3[0] | |
| y = (1 - t) * (1 - t) * pt1[1] + 2 * (1 - t) * t * pt2[1] + t * t * pt3[1] | |
| return (x, y) | |
| def cubicPointAtT(pt1, pt2, pt3, pt4, t): | |
| """Finds the point at time `t` on a cubic curve. | |
| Args: | |
| pt1, pt2, pt3, pt4: Coordinates of the curve as 2D tuples. | |
| t: The time along the curve. | |
| Returns: | |
| A 2D tuple with the coordinates of the point. | |
| """ | |
| t2 = t * t | |
| _1_t = 1 - t | |
| _1_t_2 = _1_t * _1_t | |
| x = ( | |
| _1_t_2 * _1_t * pt1[0] | |
| + 3 * (_1_t_2 * t * pt2[0] + _1_t * t2 * pt3[0]) | |
| + t2 * t * pt4[0] | |
| ) | |
| y = ( | |
| _1_t_2 * _1_t * pt1[1] | |
| + 3 * (_1_t_2 * t * pt2[1] + _1_t * t2 * pt3[1]) | |
| + t2 * t * pt4[1] | |
| ) | |
| return (x, y) | |
| def cubicPointAtTC(pt1, pt2, pt3, pt4, t): | |
| """Finds the point at time `t` on a cubic curve. | |
| Args: | |
| pt1, pt2, pt3, pt4: Coordinates of the curve as complex numbers. | |
| t: The time along the curve. | |
| Returns: | |
| A complex number with the coordinates of the point. | |
| """ | |
| t2 = t * t | |
| _1_t = 1 - t | |
| _1_t_2 = _1_t * _1_t | |
| return _1_t_2 * _1_t * pt1 + 3 * (_1_t_2 * t * pt2 + _1_t * t2 * pt3) + t2 * t * pt4 | |
| def segmentPointAtT(seg, t): | |
| if len(seg) == 2: | |
| return linePointAtT(*seg, t) | |
| elif len(seg) == 3: | |
| return quadraticPointAtT(*seg, t) | |
| elif len(seg) == 4: | |
| return cubicPointAtT(*seg, t) | |
| raise ValueError("Unknown curve degree") | |
| # | |
| # Intersection finders | |
| # | |
| def _line_t_of_pt(s, e, pt): | |
| sx, sy = s | |
| ex, ey = e | |
| px, py = pt | |
| if abs(sx - ex) < epsilon and abs(sy - ey) < epsilon: | |
| # Line is a point! | |
| return -1 | |
| # Use the largest | |
| if abs(sx - ex) > abs(sy - ey): | |
| return (px - sx) / (ex - sx) | |
| else: | |
| return (py - sy) / (ey - sy) | |
| def _both_points_are_on_same_side_of_origin(a, b, origin): | |
| xDiff = (a[0] - origin[0]) * (b[0] - origin[0]) | |
| yDiff = (a[1] - origin[1]) * (b[1] - origin[1]) | |
| return not (xDiff <= 0.0 and yDiff <= 0.0) | |
| def lineLineIntersections(s1, e1, s2, e2): | |
| """Finds intersections between two line segments. | |
| Args: | |
| s1, e1: Coordinates of the first line as 2D tuples. | |
| s2, e2: Coordinates of the second line as 2D tuples. | |
| Returns: | |
| A list of ``Intersection`` objects, each object having ``pt``, ``t1`` | |
| and ``t2`` attributes containing the intersection point, time on first | |
| segment and time on second segment respectively. | |
| Examples:: | |
| >>> a = lineLineIntersections( (310,389), (453, 222), (289, 251), (447, 367)) | |
| >>> len(a) | |
| 1 | |
| >>> intersection = a[0] | |
| >>> intersection.pt | |
| (374.44882952482897, 313.73458370177315) | |
| >>> (intersection.t1, intersection.t2) | |
| (0.45069111555824465, 0.5408153767394238) | |
| """ | |
| s1x, s1y = s1 | |
| e1x, e1y = e1 | |
| s2x, s2y = s2 | |
| e2x, e2y = e2 | |
| if ( | |
| math.isclose(s2x, e2x) and math.isclose(s1x, e1x) and not math.isclose(s1x, s2x) | |
| ): # Parallel vertical | |
| return [] | |
| if ( | |
| math.isclose(s2y, e2y) and math.isclose(s1y, e1y) and not math.isclose(s1y, s2y) | |
| ): # Parallel horizontal | |
| return [] | |
| if math.isclose(s2x, e2x) and math.isclose(s2y, e2y): # Line segment is tiny | |
| return [] | |
| if math.isclose(s1x, e1x) and math.isclose(s1y, e1y): # Line segment is tiny | |
| return [] | |
| if math.isclose(e1x, s1x): | |
| x = s1x | |
| slope34 = (e2y - s2y) / (e2x - s2x) | |
| y = slope34 * (x - s2x) + s2y | |
| pt = (x, y) | |
| return [ | |
| Intersection( | |
| pt=pt, t1=_line_t_of_pt(s1, e1, pt), t2=_line_t_of_pt(s2, e2, pt) | |
| ) | |
| ] | |
| if math.isclose(s2x, e2x): | |
| x = s2x | |
| slope12 = (e1y - s1y) / (e1x - s1x) | |
| y = slope12 * (x - s1x) + s1y | |
| pt = (x, y) | |
| return [ | |
| Intersection( | |
| pt=pt, t1=_line_t_of_pt(s1, e1, pt), t2=_line_t_of_pt(s2, e2, pt) | |
| ) | |
| ] | |
| slope12 = (e1y - s1y) / (e1x - s1x) | |
| slope34 = (e2y - s2y) / (e2x - s2x) | |
| if math.isclose(slope12, slope34): | |
| return [] | |
| x = (slope12 * s1x - s1y - slope34 * s2x + s2y) / (slope12 - slope34) | |
| y = slope12 * (x - s1x) + s1y | |
| pt = (x, y) | |
| if _both_points_are_on_same_side_of_origin( | |
| pt, e1, s1 | |
| ) and _both_points_are_on_same_side_of_origin(pt, s2, e2): | |
| return [ | |
| Intersection( | |
| pt=pt, t1=_line_t_of_pt(s1, e1, pt), t2=_line_t_of_pt(s2, e2, pt) | |
| ) | |
| ] | |
| return [] | |
| def _alignment_transformation(segment): | |
| # Returns a transformation which aligns a segment horizontally at the | |
| # origin. Apply this transformation to curves and root-find to find | |
| # intersections with the segment. | |
| start = segment[0] | |
| end = segment[-1] | |
| angle = math.atan2(end[1] - start[1], end[0] - start[0]) | |
| return Identity.rotate(-angle).translate(-start[0], -start[1]) | |
| def _curve_line_intersections_t(curve, line): | |
| aligned_curve = _alignment_transformation(line).transformPoints(curve) | |
| if len(curve) == 3: | |
| a, b, c = calcQuadraticParameters(*aligned_curve) | |
| intersections = solveQuadratic(a[1], b[1], c[1]) | |
| elif len(curve) == 4: | |
| a, b, c, d = calcCubicParameters(*aligned_curve) | |
| intersections = solveCubic(a[1], b[1], c[1], d[1]) | |
| else: | |
| raise ValueError("Unknown curve degree") | |
| return sorted(i for i in intersections if 0.0 <= i <= 1) | |
| def curveLineIntersections(curve, line): | |
| """Finds intersections between a curve and a line. | |
| Args: | |
| curve: List of coordinates of the curve segment as 2D tuples. | |
| line: List of coordinates of the line segment as 2D tuples. | |
| Returns: | |
| A list of ``Intersection`` objects, each object having ``pt``, ``t1`` | |
| and ``t2`` attributes containing the intersection point, time on first | |
| segment and time on second segment respectively. | |
| Examples:: | |
| >>> curve = [ (100, 240), (30, 60), (210, 230), (160, 30) ] | |
| >>> line = [ (25, 260), (230, 20) ] | |
| >>> intersections = curveLineIntersections(curve, line) | |
| >>> len(intersections) | |
| 3 | |
| >>> intersections[0].pt | |
| (84.9000930760723, 189.87306176459828) | |
| """ | |
| if len(curve) == 3: | |
| pointFinder = quadraticPointAtT | |
| elif len(curve) == 4: | |
| pointFinder = cubicPointAtT | |
| else: | |
| raise ValueError("Unknown curve degree") | |
| intersections = [] | |
| for t in _curve_line_intersections_t(curve, line): | |
| pt = pointFinder(*curve, t) | |
| # Back-project the point onto the line, to avoid problems with | |
| # numerical accuracy in the case of vertical and horizontal lines | |
| line_t = _line_t_of_pt(*line, pt) | |
| pt = linePointAtT(*line, line_t) | |
| intersections.append(Intersection(pt=pt, t1=t, t2=line_t)) | |
| return intersections | |
| def _curve_bounds(c): | |
| if len(c) == 3: | |
| return calcQuadraticBounds(*c) | |
| elif len(c) == 4: | |
| return calcCubicBounds(*c) | |
| raise ValueError("Unknown curve degree") | |
| def _split_segment_at_t(c, t): | |
| if len(c) == 2: | |
| s, e = c | |
| midpoint = linePointAtT(s, e, t) | |
| return [(s, midpoint), (midpoint, e)] | |
| if len(c) == 3: | |
| return splitQuadraticAtT(*c, t) | |
| elif len(c) == 4: | |
| return splitCubicAtT(*c, t) | |
| raise ValueError("Unknown curve degree") | |
| def _curve_curve_intersections_t( | |
| curve1, curve2, precision=1e-3, range1=None, range2=None | |
| ): | |
| bounds1 = _curve_bounds(curve1) | |
| bounds2 = _curve_bounds(curve2) | |
| if not range1: | |
| range1 = (0.0, 1.0) | |
| if not range2: | |
| range2 = (0.0, 1.0) | |
| # If bounds don't intersect, go home | |
| intersects, _ = sectRect(bounds1, bounds2) | |
| if not intersects: | |
| return [] | |
| def midpoint(r): | |
| return 0.5 * (r[0] + r[1]) | |
| # If they do overlap but they're tiny, approximate | |
| if rectArea(bounds1) < precision and rectArea(bounds2) < precision: | |
| return [(midpoint(range1), midpoint(range2))] | |
| c11, c12 = _split_segment_at_t(curve1, 0.5) | |
| c11_range = (range1[0], midpoint(range1)) | |
| c12_range = (midpoint(range1), range1[1]) | |
| c21, c22 = _split_segment_at_t(curve2, 0.5) | |
| c21_range = (range2[0], midpoint(range2)) | |
| c22_range = (midpoint(range2), range2[1]) | |
| found = [] | |
| found.extend( | |
| _curve_curve_intersections_t( | |
| c11, c21, precision, range1=c11_range, range2=c21_range | |
| ) | |
| ) | |
| found.extend( | |
| _curve_curve_intersections_t( | |
| c12, c21, precision, range1=c12_range, range2=c21_range | |
| ) | |
| ) | |
| found.extend( | |
| _curve_curve_intersections_t( | |
| c11, c22, precision, range1=c11_range, range2=c22_range | |
| ) | |
| ) | |
| found.extend( | |
| _curve_curve_intersections_t( | |
| c12, c22, precision, range1=c12_range, range2=c22_range | |
| ) | |
| ) | |
| unique_key = lambda ts: (int(ts[0] / precision), int(ts[1] / precision)) | |
| seen = set() | |
| unique_values = [] | |
| for ts in found: | |
| key = unique_key(ts) | |
| if key in seen: | |
| continue | |
| seen.add(key) | |
| unique_values.append(ts) | |
| return unique_values | |
| def _is_linelike(segment): | |
| maybeline = _alignment_transformation(segment).transformPoints(segment) | |
| return all(math.isclose(p[1], 0.0) for p in maybeline) | |
| def curveCurveIntersections(curve1, curve2): | |
| """Finds intersections between a curve and a curve. | |
| Args: | |
| curve1: List of coordinates of the first curve segment as 2D tuples. | |
| curve2: List of coordinates of the second curve segment as 2D tuples. | |
| Returns: | |
| A list of ``Intersection`` objects, each object having ``pt``, ``t1`` | |
| and ``t2`` attributes containing the intersection point, time on first | |
| segment and time on second segment respectively. | |
| Examples:: | |
| >>> curve1 = [ (10,100), (90,30), (40,140), (220,220) ] | |
| >>> curve2 = [ (5,150), (180,20), (80,250), (210,190) ] | |
| >>> intersections = curveCurveIntersections(curve1, curve2) | |
| >>> len(intersections) | |
| 3 | |
| >>> intersections[0].pt | |
| (81.7831487395506, 109.88904552375288) | |
| """ | |
| if _is_linelike(curve1): | |
| line1 = curve1[0], curve1[-1] | |
| if _is_linelike(curve2): | |
| line2 = curve2[0], curve2[-1] | |
| return lineLineIntersections(*line1, *line2) | |
| else: | |
| return curveLineIntersections(curve2, line1) | |
| elif _is_linelike(curve2): | |
| line2 = curve2[0], curve2[-1] | |
| return curveLineIntersections(curve1, line2) | |
| intersection_ts = _curve_curve_intersections_t(curve1, curve2) | |
| return [ | |
| Intersection(pt=segmentPointAtT(curve1, ts[0]), t1=ts[0], t2=ts[1]) | |
| for ts in intersection_ts | |
| ] | |
| def segmentSegmentIntersections(seg1, seg2): | |
| """Finds intersections between two segments. | |
| Args: | |
| seg1: List of coordinates of the first segment as 2D tuples. | |
| seg2: List of coordinates of the second segment as 2D tuples. | |
| Returns: | |
| A list of ``Intersection`` objects, each object having ``pt``, ``t1`` | |
| and ``t2`` attributes containing the intersection point, time on first | |
| segment and time on second segment respectively. | |
| Examples:: | |
| >>> curve1 = [ (10,100), (90,30), (40,140), (220,220) ] | |
| >>> curve2 = [ (5,150), (180,20), (80,250), (210,190) ] | |
| >>> intersections = segmentSegmentIntersections(curve1, curve2) | |
| >>> len(intersections) | |
| 3 | |
| >>> intersections[0].pt | |
| (81.7831487395506, 109.88904552375288) | |
| >>> curve3 = [ (100, 240), (30, 60), (210, 230), (160, 30) ] | |
| >>> line = [ (25, 260), (230, 20) ] | |
| >>> intersections = segmentSegmentIntersections(curve3, line) | |
| >>> len(intersections) | |
| 3 | |
| >>> intersections[0].pt | |
| (84.9000930760723, 189.87306176459828) | |
| """ | |
| # Arrange by degree | |
| swapped = False | |
| if len(seg2) > len(seg1): | |
| seg2, seg1 = seg1, seg2 | |
| swapped = True | |
| if len(seg1) > 2: | |
| if len(seg2) > 2: | |
| intersections = curveCurveIntersections(seg1, seg2) | |
| else: | |
| intersections = curveLineIntersections(seg1, seg2) | |
| elif len(seg1) == 2 and len(seg2) == 2: | |
| intersections = lineLineIntersections(*seg1, *seg2) | |
| else: | |
| raise ValueError("Couldn't work out which intersection function to use") | |
| if not swapped: | |
| return intersections | |
| return [Intersection(pt=i.pt, t1=i.t2, t2=i.t1) for i in intersections] | |
| def _segmentrepr(obj): | |
| """ | |
| >>> _segmentrepr([1, [2, 3], [], [[2, [3, 4], [0.1, 2.2]]]]) | |
| '(1, (2, 3), (), ((2, (3, 4), (0.1, 2.2))))' | |
| """ | |
| try: | |
| it = iter(obj) | |
| except TypeError: | |
| return "%g" % obj | |
| else: | |
| return "(%s)" % ", ".join(_segmentrepr(x) for x in it) | |
| def printSegments(segments): | |
| """Helper for the doctests, displaying each segment in a list of | |
| segments on a single line as a tuple. | |
| """ | |
| for segment in segments: | |
| print(_segmentrepr(segment)) | |
| if __name__ == "__main__": | |
| import sys | |
| import doctest | |
| sys.exit(doctest.testmod().failed) | |