Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
#################### | |
# Critic Model # | |
#################### | |
# Part of the code is adapted from here: https://github.com/yaohungt/Pointwise_Dependency_Neural_Estimation | |
def probabilistic_classifier_obj(f): | |
criterion = nn.BCEWithLogitsLoss() | |
batch_size = f.shape[0] | |
labels = [0.]*(batch_size*batch_size) | |
labels[::(batch_size+1)] = [1.]*batch_size | |
labels = torch.tensor(labels).type_as(f) | |
labels = labels.view(-1,1) | |
logits = f.contiguous().view(-1,1) | |
Loss = -1.*criterion(logits, labels) | |
return Loss | |
def probabilistic_classifier_eval(f): | |
batch_size = f.shape[0] | |
joint_feat = f.contiguous().view(-1)[::(batch_size+1)] | |
joint_logits = torch.clamp(torch.sigmoid(joint_feat), min=1e-6, max=1-1e-6) | |
MI = torch.mean(torch.log((batch_size-1)*joint_logits/(1.-joint_logits))) | |
# we have batch_size*(batch_size-1) product of marginal samples | |
# we have batch_size joint density samples | |
return MI | |
def infonce_lower_bound_obj(scores): | |
nll = scores.diag().mean() - scores.logsumexp(dim=1) | |
# Alternative implementation: | |
# nll = -tf.nn.sparse_softmax_cross_entropy_with_logits(logits=scores, labels=tf.range(batch_size)) | |
mi = torch.tensor(scores.size(0)).float().log() + nll | |
mi = mi.mean() | |
return mi | |
def mlp(dim, hidden_dim, output_dim, layers, activation): | |
activation = { | |
'relu': nn.ReLU, | |
'tanh': nn.Tanh, | |
}[activation] | |
seq = [nn.Linear(dim, hidden_dim), activation()] | |
for _ in range(layers): | |
seq += [nn.Linear(hidden_dim, hidden_dim), activation()] | |
seq += [nn.Linear(hidden_dim, output_dim)] | |
return nn.Sequential(*seq) | |
class SeparableCritic(nn.Module): | |
def __init__(self, x1_dim, x2_dim, hidden_dim, embed_dim, | |
layers, activation): | |
super(SeparableCritic, self).__init__() | |
self._g = mlp(x1_dim, hidden_dim, embed_dim, layers, activation) | |
self._h = mlp(x2_dim, hidden_dim, embed_dim, layers, activation) | |
def transformed_x(self, x): | |
return self._g(x) | |
def transformed_y(self, y): | |
return self._h(y) | |
def forward(self, x, y): | |
scores = torch.matmul(self._h(y), self._g(x).t()) | |
return scores | |
def pointwise_mi(self, x, y, estimator): | |
scores = torch.matmul(self._h(y), self._g(x).t()) | |
if estimator == 'probabilistic_classifier': | |
# the prob of being a pair | |
# PMI = torch.sigmoid(scores.diag()) | |
# PMI | |
batch_size = scores.shape[0] | |
# N_pxpy / N_pxy = (batch_size - 1.) * batch_size / batch_size | |
PMI = scores.diag() + np.log(batch_size - 1.) | |
else: | |
raise NotImplementedError("not supporting our PMI!") | |
return PMI | |
class ConcatCritic(nn.Module): | |
def __init__(self, A_dim, B_dim, hidden_dim, layers, activation, **extra_kwargs): | |
super(ConcatCritic, self).__init__() | |
# output is scalar score | |
self._f = mlp(A_dim + B_dim, hidden_dim, 1, layers, activation) | |
def forward(self, x, y): | |
batch_size = x.shape[0] | |
# Tile all possible combinations of x and y | |
x_tiled = torch.stack([x] * batch_size, dim=0) | |
y_tiled = torch.stack([y] * batch_size, dim=1) | |
# xy is [batch_size * batch_size, x_dim + y_dim] | |
xy_pairs = torch.reshape(torch.cat((x_tiled, y_tiled), dim=2), [batch_size * batch_size, -1]) | |
# Compute scores for each x_i, y_j pair. | |
scores = self._f(xy_pairs) | |
return torch.reshape(scores, [batch_size, batch_size]).t() | |
# Concat critic with the InfoNCE (NCE) objective | |
class InfoNCECritic(nn.Module): | |
def __init__(self, A_dim, B_dim, hidden_dim, layers, activation, **extra_kwargs): | |
super(InfoNCECritic, self).__init__() | |
# output is scalar score | |
self._f = mlp(A_dim + B_dim, hidden_dim, 1, layers, activation) | |
def forward(self, x_samples, y_samples): | |
sample_size = y_samples.shape[0] | |
#x_samples = F.normalize(x_samples, dim=-1) | |
#y_samples = F.normalize(y_samples, dim=-1) | |
x_tile = x_samples.unsqueeze(0).repeat((sample_size, 1, 1)) | |
y_tile = y_samples.unsqueeze(1).repeat((1, sample_size, 1)) | |
T0 = self._f(torch.cat([x_samples,y_samples], dim = -1)) | |
T1 = self._f(torch.cat([x_tile, y_tile], dim = -1)) | |
lower_bound = T0.mean() - (T1.logsumexp(dim = 1).mean() - np.log(sample_size)) | |
return -lower_bound | |
# Concat critic with the CLUBInfoNCE (NCE-CLUB) objective | |
class CLUBInfoNCECritic(nn.Module): | |
def __init__(self, A_dim, B_dim, hidden_dim, layers, activation, **extra_kwargs): | |
super(CLUBInfoNCECritic, self).__init__() | |
self._f = mlp(A_dim + B_dim, hidden_dim, 1, layers, activation) | |
# CLUB loss | |
def forward(self, x_samples, y_samples): | |
sample_size = y_samples.shape[0] | |
#x_samples = F.normalize(x_samples, dim=-1) | |
#y_samples = F.normalize(y_samples, dim=-1) | |
x_tile = x_samples.unsqueeze(0).repeat((sample_size, 1, 1)) | |
y_tile = y_samples.unsqueeze(1).repeat((1, sample_size, 1)) | |
T0 = self._f(torch.cat([y_samples,x_samples], dim = -1)) | |
T1 = self._f(torch.cat([y_tile, x_tile], dim = -1)) | |
return -(T0.mean() - T1.mean()) | |
# InfoNCE loss | |
def learning_loss(self, x_samples, y_samples): | |
sample_size = y_samples.shape[0] | |
#x_samples = F.normalize(x_samples, dim=-1) | |
#y_samples = F.normalize(y_samples, dim=-1) | |
x_tile = x_samples.unsqueeze(0).repeat((sample_size, 1, 1)) | |
y_tile = y_samples.unsqueeze(1).repeat((1, sample_size, 1)) | |
T0 = self._f(torch.cat([y_samples,x_samples], dim = -1)) | |
T1 = self._f(torch.cat([y_tile, x_tile], dim = -1)) | |
lower_bound = T0.mean() - (T1.logsumexp(dim = 1).mean() - np.log(sample_size)) | |
return -lower_bound | |
class SupConLoss(nn.Module): | |
"""Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf. | |
It also supports the unsupervised contrastive loss in SimCLR""" | |
def __init__(self, temperature=0.07, contrast_mode='all', | |
base_temperature=0.07): | |
super(SupConLoss, self).__init__() | |
self.temperature = temperature | |
self.contrast_mode = contrast_mode | |
self.base_temperature = base_temperature | |
def forward(self, features, labels=None, mask=None): | |
"""Compute loss for model. If both `labels` and `mask` are None, | |
it degenerates to SimCLR unsupervised loss: | |
https://arxiv.org/pdf/2002.05709.pdf | |
Args: | |
features: hidden vector of shape [bsz, n_views, ...]. | |
labels: ground truth of shape [bsz]. | |
mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j | |
has the same class as sample i. Can be asymmetric. | |
Returns: | |
A loss scalar. | |
""" | |
device = (torch.device('cuda') | |
if features.is_cuda | |
else torch.device('cpu')) | |
if len(features.shape) < 3: | |
raise ValueError('`features` needs to be [bsz, n_views, ...],' | |
'at least 3 dimensions are required') | |
if len(features.shape) > 3: | |
features = features.view(features.shape[0], features.shape[1], -1) | |
batch_size = features.shape[0] | |
if labels is not None and mask is not None: | |
raise ValueError('Cannot define both `labels` and `mask`') | |
elif labels is None and mask is None: | |
mask = torch.eye(batch_size, dtype=torch.float32).to(device) | |
elif labels is not None: | |
labels = labels.contiguous().view(-1, 1) | |
if labels.shape[0] != batch_size: | |
raise ValueError('Num of labels does not match num of features') | |
mask = torch.eq(labels, labels.T).float().to(device) | |
else: | |
mask = mask.float().to(device) | |
contrast_count = features.shape[1] | |
contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0) | |
if self.contrast_mode == 'one': | |
anchor_feature = features[:, 0] | |
anchor_count = 1 | |
elif self.contrast_mode == 'all': | |
anchor_feature = contrast_feature | |
anchor_count = contrast_count | |
else: | |
raise ValueError('Unknown mode: {}'.format(self.contrast_mode)) | |
# compute logits | |
anchor_dot_contrast = torch.div( | |
torch.matmul(anchor_feature, contrast_feature.T), | |
self.temperature) | |
# for numerical stability | |
logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True) | |
logits = anchor_dot_contrast - logits_max.detach() | |
# tile mask | |
mask = mask.repeat(anchor_count, contrast_count) | |
# mask-out self-contrast cases | |
logits_mask = torch.scatter( | |
torch.ones_like(mask), | |
1, | |
torch.arange(batch_size * anchor_count).view(-1, 1).to(device), | |
0 | |
) | |
mask = mask * logits_mask | |
# compute log_prob | |
exp_logits = torch.exp(logits) * logits_mask | |
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True)) | |
# compute mean of log-likelihood over positive | |
mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1) | |
# loss | |
loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos | |
loss = loss.view(anchor_count, batch_size).mean() | |
return loss | |